
In the series LCR circuit, the voltmeter and ammeter readings are:

A) $V = 100\,V$, $I = 2\,A$
B) $V = 100\,V$, $I = 5\,A$
C) $V = 1000\,V$, $I = 2\,A$
D) $V = 300\,V$, $I = 1\,A$
Answer
218.4k+ views
Hint: In LCR circuit, if the resistor, inductor and capacitor is connected in series, then the voltmeter and ammeter readings can be determined by using the current and voltage formula. By using the voltage formula, the voltmeter reading can be determined, and by using the current formula the ammeter reading can be determined.
Formula used:
The expression for finding the reading of voltmeter is
$V = \sqrt {{V_R}^2 + {{\left( {{V_L} - {V_C}} \right)}^2}} $
Where, $V$ is the voltmeter reading, ${V_R}$ is the voltage across resistor, ${V_L}$ is the voltage across the inductor, ${V_C}$ is the voltage across the capacitor.
By ohm’s law,
$V = IR$
Where, $V$ is the voltage, $I$ is the current and $R$ is the resistance.
Complete step by step solution:
Given that,
Resistance, $R = 50\,\Omega $,
Voltage across inductor, ${V_L} = 400\,V$
Voltage across capacitor, ${V_C} = 400\,V$
Voltage across resistor, ${V_R} = 100\,V$
The expression for finding the reading of voltmeter is
$V = \sqrt {{V_R}^2 + {{\left( {{V_L} - {V_C}} \right)}^2}} \,.................\left( 1 \right)$
On substituting the voltage across inductor, capacitor and resistor in the above equation (1), then
$V = \sqrt {{{\left( {100} \right)}^2} + {{\left( {400 - 400} \right)}^2}} $
By simplifying the terms, then the above equation is written as,
$V = \sqrt {{{\left( {100} \right)}^2} + 0} $
The above equation is written as,
$V = \sqrt {{{\left( {100} \right)}^2}} $
In the above equation the square and the square root get cancel each other, then the above equation is written as,
$V = 100\,V$
Thus, the above equation shows the voltage reading shown by the voltmeter.
Now,
By using the ohm’s law,
$V = IR\,............\left( 2 \right)$
We have to find the current, so keep the current in one side and the other terms in other side, then the above equation is written as,
$I = \dfrac{V}{R}$
Now, substituting the voltage value and the resistance value in the above equation, then the above equation is written as,
$I = \dfrac{{100}}{{50}}$
On dividing, then
$I = 2\,A$
Thus, the above equation shows the current reading shown by the ammeter.
Hence, the option (A) is the correct answer.
Note: The voltage across the inductor and capacitor is same, by subtracting these terms it will become zero, in equation (2), the voltage value substituted is the applied potential difference to the LCR circuit and it is mentioned in the circuit diagram. Then by substituting, the current reading shown by ammeter is determined.
Formula used:
The expression for finding the reading of voltmeter is
$V = \sqrt {{V_R}^2 + {{\left( {{V_L} - {V_C}} \right)}^2}} $
Where, $V$ is the voltmeter reading, ${V_R}$ is the voltage across resistor, ${V_L}$ is the voltage across the inductor, ${V_C}$ is the voltage across the capacitor.
By ohm’s law,
$V = IR$
Where, $V$ is the voltage, $I$ is the current and $R$ is the resistance.
Complete step by step solution:
Given that,
Resistance, $R = 50\,\Omega $,
Voltage across inductor, ${V_L} = 400\,V$
Voltage across capacitor, ${V_C} = 400\,V$
Voltage across resistor, ${V_R} = 100\,V$
The expression for finding the reading of voltmeter is
$V = \sqrt {{V_R}^2 + {{\left( {{V_L} - {V_C}} \right)}^2}} \,.................\left( 1 \right)$
On substituting the voltage across inductor, capacitor and resistor in the above equation (1), then
$V = \sqrt {{{\left( {100} \right)}^2} + {{\left( {400 - 400} \right)}^2}} $
By simplifying the terms, then the above equation is written as,
$V = \sqrt {{{\left( {100} \right)}^2} + 0} $
The above equation is written as,
$V = \sqrt {{{\left( {100} \right)}^2}} $
In the above equation the square and the square root get cancel each other, then the above equation is written as,
$V = 100\,V$
Thus, the above equation shows the voltage reading shown by the voltmeter.
Now,
By using the ohm’s law,
$V = IR\,............\left( 2 \right)$
We have to find the current, so keep the current in one side and the other terms in other side, then the above equation is written as,
$I = \dfrac{V}{R}$
Now, substituting the voltage value and the resistance value in the above equation, then the above equation is written as,
$I = \dfrac{{100}}{{50}}$
On dividing, then
$I = 2\,A$
Thus, the above equation shows the current reading shown by the ammeter.
Hence, the option (A) is the correct answer.
Note: The voltage across the inductor and capacitor is same, by subtracting these terms it will become zero, in equation (2), the voltage value substituted is the applied potential difference to the LCR circuit and it is mentioned in the circuit diagram. Then by substituting, the current reading shown by ammeter is determined.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

Understanding Electromagnetic Waves and Their Importance

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Main 2025-26 Mock Test: Ultimate Practice Guide for Aspirants

Other Pages
Diffraction of Light - Young’s Single Slit Experiment

What Are Elastic Collisions in One Dimension?

Understanding Excess Pressure Inside a Liquid Drop

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Elastic Collisions in Two Dimensions

Understanding the Wheatstone Bridge: Principles, Formula, and Applications

