
In the Bohr's model of a hydrogen atom, the centripetal force is furnished by the coulomb attraction between the proton and the electron. If \[{a_0}\] is the radius of the ground state orbit, m is the mass and e is charge on the electron and \[{\varepsilon _0}\] is the vacuum permittivity, the speed of the electron is
A. Zero
B. \[\dfrac{e}{{\sqrt {{\varepsilon _0}{a_0}m} }} \\ \]
C. \[\dfrac{e}{{\sqrt {4\pi {\varepsilon _0}{a_0}m} }} \\ \]
D. \[\sqrt {\dfrac{{4\pi {\varepsilon _0}{a_0}m}}{e}} \]
Answer
223.8k+ views
Hint:In the nucleus of Hydrogen atoms protons and neutrons reside. The electron moves in a circular orbit around the nucleus. As neutrons are neutral units, the centripetal force is furnished by the coulomb attraction between the proton and the electron.
Formula used:
\[{F_i} = \dfrac{{{q_1} \times {q_2}}}{{4\pi {\varepsilon _0}{d^2}}}\]
where \[{F_i}\] is the inward coulomb’s force of attraction between charges \[{q_1}\] and \[{q_2}\] separated by distance d.
\[{F_o} = \dfrac{{m{v^2}}}{r}\]
where \[{F_o}\] is the outward centrifugal force acting on mass m revolving around an orbit of radius r with speed v.
Complete step by step solution:
The mass of the electron is given as m. The charge on the electron is e. As we know that the magnitude of charge on protons is the same as the magnitude of charge on electrons, so the charge on protons is also e. The electron is orbiting in the circular orbit of radius \[{a_0}\].
The centripetal force acting on the electron is due to the Coulomb force of attraction between two charges kept at distance equal to the radius of the orbit.
\[{F_i} = \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}a_0^2}}\]
Let the speed of the electron is v in the circular orbit, then radially outward there will be centrifugal force acting on it.
\[{F_0} = \dfrac{{m{v^2}}}{{{a_0}}}\]
When the electron is performing uniform circular motion in a constant radius of orbit, it is at equilibrium along the radial direction.
So, the outward centrifugal force is balanced by inward centripetal force.
\[{F_i} = {F_o}\]
\[\Rightarrow \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}a_0^2}} = \dfrac{{m{v^2}}}{{{a_0}}} \\ \]
\[\Rightarrow {v^2} = \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}m{a_0}}} \\ \]
\[\Rightarrow v = \sqrt {\dfrac{{{e^2}}}{{4\pi {\varepsilon _0}m{a_0}}}} \\ \]
\[\therefore v = \dfrac{e}{{\sqrt {4\pi {\varepsilon _0}m{a_0}} }} \\ \]
So, the speed of the electron in the circular orbit about the nucleus of the hydrogen atom is equal to \[\dfrac{e}{{\sqrt {4\pi {\varepsilon _0}{a_0}m} }}\].
Therefore, the correct option is C.
Note: The nucleus of the hydrogen has mass and the electron too has mass. Due to mass there is gravitational force of attraction between the nucleus and the electron which contribute to the centripetal force. But, the magnitude of the gravitational force of attraction between the nucleus of hydrogen and the orbiting electron is insignificant relative to the coulomb’s force of attraction. So, we don’t neglect it while solving the problem.
Formula used:
\[{F_i} = \dfrac{{{q_1} \times {q_2}}}{{4\pi {\varepsilon _0}{d^2}}}\]
where \[{F_i}\] is the inward coulomb’s force of attraction between charges \[{q_1}\] and \[{q_2}\] separated by distance d.
\[{F_o} = \dfrac{{m{v^2}}}{r}\]
where \[{F_o}\] is the outward centrifugal force acting on mass m revolving around an orbit of radius r with speed v.
Complete step by step solution:
The mass of the electron is given as m. The charge on the electron is e. As we know that the magnitude of charge on protons is the same as the magnitude of charge on electrons, so the charge on protons is also e. The electron is orbiting in the circular orbit of radius \[{a_0}\].
The centripetal force acting on the electron is due to the Coulomb force of attraction between two charges kept at distance equal to the radius of the orbit.
\[{F_i} = \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}a_0^2}}\]
Let the speed of the electron is v in the circular orbit, then radially outward there will be centrifugal force acting on it.
\[{F_0} = \dfrac{{m{v^2}}}{{{a_0}}}\]
When the electron is performing uniform circular motion in a constant radius of orbit, it is at equilibrium along the radial direction.
So, the outward centrifugal force is balanced by inward centripetal force.
\[{F_i} = {F_o}\]
\[\Rightarrow \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}a_0^2}} = \dfrac{{m{v^2}}}{{{a_0}}} \\ \]
\[\Rightarrow {v^2} = \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}m{a_0}}} \\ \]
\[\Rightarrow v = \sqrt {\dfrac{{{e^2}}}{{4\pi {\varepsilon _0}m{a_0}}}} \\ \]
\[\therefore v = \dfrac{e}{{\sqrt {4\pi {\varepsilon _0}m{a_0}} }} \\ \]
So, the speed of the electron in the circular orbit about the nucleus of the hydrogen atom is equal to \[\dfrac{e}{{\sqrt {4\pi {\varepsilon _0}{a_0}m} }}\].
Therefore, the correct option is C.
Note: The nucleus of the hydrogen has mass and the electron too has mass. Due to mass there is gravitational force of attraction between the nucleus and the electron which contribute to the centripetal force. But, the magnitude of the gravitational force of attraction between the nucleus of hydrogen and the orbiting electron is insignificant relative to the coulomb’s force of attraction. So, we don’t neglect it while solving the problem.
Recently Updated Pages
JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: City Intimation Slip Releasing Today, Application Form Closed, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Electromagnetic Waves and Their Importance

Understanding Atomic Structure for Beginners

