
In \[\Delta ABC\],find \[1 - \tan \dfrac{A}{2}\tan \dfrac{B}{2}\].
A. \[\dfrac{{2c}}{{a + b + c}}\]
B. \[\dfrac{a}{{a + b + c}}\]
C. \[\dfrac{2}{{a + b + c}}\]
D. \[\dfrac{{4a}}{{a + b + c}}\]
Answer
163.2k+ views
Hint: First we will break tangent into cosine and sine. Then apply the half angle formulas of the triangle to get the desired result.
Formula used:
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b\]
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Complete step by step solution:
The given expression is
\[1 - \tan \dfrac{A}{2}\tan \dfrac{B}{2}\]
Then apply the formula \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[ = 1 - \dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}} \cdot \dfrac{{\sin \dfrac{B}{2}}}{{\cos \dfrac{B}{2}}}\]
\[ = \dfrac{{\cos \dfrac{A}{2}\cos \dfrac{B}{2} - \sin \dfrac{A}{2}\sin \dfrac{B}{2}}}{{\cos \dfrac{A}{2}\cos \dfrac{B}{2}}}\]
Applying the sum of angle of cosine is \[\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b\]
\[ = \dfrac{{\cos \dfrac{A}{2}\cos \dfrac{B}{2} - \sin \dfrac{A}{2}\sin \dfrac{B}{2}}}{{\cos \dfrac{A}{2}\cos \dfrac{B}{2}}}\]
\[ = \dfrac{{\cos \left( {\dfrac{A}{2} + \dfrac{B}{2}} \right)}}{{\cos \dfrac{A}{2}\cos \dfrac{B}{2}}}\]
Since ABC is a triangle, thus \[A + B + C = \pi \] \[ \Rightarrow A + B = \pi - C\]
\[ = \dfrac{{\cos \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right)}}{{\cos \dfrac{A}{2}\cos \dfrac{B}{2}}}\]
\[ = \dfrac{{\sin \dfrac{C}{2}}}{{\cos \dfrac{A}{2}\cos \dfrac{B}{2}}}\]
Applying half angle of triangle formula
\[ = \dfrac{{\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} }}{{\sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} }}\]
\[ = \dfrac{{c\sqrt {ab} \sqrt {\left( {s - a} \right)\left( {s - b} \right)} }}{{\sqrt {ab} \sqrt {s\left( {s - a} \right)} \sqrt {s\left( {s - b} \right)} }}\]
Cancel out \[\sqrt {ab} \sqrt {\left( {s - a} \right)\left( {s - b} \right)} \] from denominator and numerator
\[ = \dfrac{c}{s}\]
Putting \[s = \dfrac{{a + b + c}}{2}\]
\[ = \dfrac{c}{{\dfrac{{a + b + c}}{2}}}\]
\[ = \dfrac{{2c}}{{a + b + c}}\]
Hence option A is the correct option.
Note: Students often confuse with the value of s. They use s = a+b+c which is incorrect. S is semi perimeter. Thus \[s = \dfrac{{a + b + c}}{2}\].
Formula used:
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b\]
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Complete step by step solution:
The given expression is
\[1 - \tan \dfrac{A}{2}\tan \dfrac{B}{2}\]
Then apply the formula \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[ = 1 - \dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}} \cdot \dfrac{{\sin \dfrac{B}{2}}}{{\cos \dfrac{B}{2}}}\]
\[ = \dfrac{{\cos \dfrac{A}{2}\cos \dfrac{B}{2} - \sin \dfrac{A}{2}\sin \dfrac{B}{2}}}{{\cos \dfrac{A}{2}\cos \dfrac{B}{2}}}\]
Applying the sum of angle of cosine is \[\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b\]
\[ = \dfrac{{\cos \dfrac{A}{2}\cos \dfrac{B}{2} - \sin \dfrac{A}{2}\sin \dfrac{B}{2}}}{{\cos \dfrac{A}{2}\cos \dfrac{B}{2}}}\]
\[ = \dfrac{{\cos \left( {\dfrac{A}{2} + \dfrac{B}{2}} \right)}}{{\cos \dfrac{A}{2}\cos \dfrac{B}{2}}}\]
Since ABC is a triangle, thus \[A + B + C = \pi \] \[ \Rightarrow A + B = \pi - C\]
\[ = \dfrac{{\cos \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right)}}{{\cos \dfrac{A}{2}\cos \dfrac{B}{2}}}\]
\[ = \dfrac{{\sin \dfrac{C}{2}}}{{\cos \dfrac{A}{2}\cos \dfrac{B}{2}}}\]
Applying half angle of triangle formula
\[ = \dfrac{{\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} }}{{\sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} }}\]
\[ = \dfrac{{c\sqrt {ab} \sqrt {\left( {s - a} \right)\left( {s - b} \right)} }}{{\sqrt {ab} \sqrt {s\left( {s - a} \right)} \sqrt {s\left( {s - b} \right)} }}\]
Cancel out \[\sqrt {ab} \sqrt {\left( {s - a} \right)\left( {s - b} \right)} \] from denominator and numerator
\[ = \dfrac{c}{s}\]
Putting \[s = \dfrac{{a + b + c}}{2}\]
\[ = \dfrac{c}{{\dfrac{{a + b + c}}{2}}}\]
\[ = \dfrac{{2c}}{{a + b + c}}\]
Hence option A is the correct option.
Note: Students often confuse with the value of s. They use s = a+b+c which is incorrect. S is semi perimeter. Thus \[s = \dfrac{{a + b + c}}{2}\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
