
In \[\Delta ABC\], if \[\tan \dfrac{A}{2}\tan \dfrac{C}{2} = \dfrac{1}{2}\], then which of the following is true for a, b, c?
A. A.P.
B. G.P.
C. H.P.
D. None of these
Answer
233.1k+ views
Hint: First we will break \[\tan \] into \[\sin \] and \[\cos \]. Then we will apply the half angle formula to simplify the given equation. By this equation, we get the relation between a, b, c.
Formula used:
Half angle formulas:
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{bc}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
Trigonometry identity:
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
Complete step by step solution:
Given equation is \[\tan \dfrac{A}{2}\tan \dfrac{C}{2} = \dfrac{1}{2}\]
Apply the formula \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[\dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}} \cdot \dfrac{{\sin \dfrac{C}{2}}}{{\cos \dfrac{C}{2}}} = \dfrac{1}{2}\]
Now applying half angle formula
\[ \Rightarrow \dfrac{{\sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} }}{{\sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} }} \cdot \dfrac{{\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} }}{{\sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} }} = \dfrac{1}{2}\]
Simplify the above equation:
\[ \Rightarrow \dfrac{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)} }}{{\sqrt {s\left( {s - a} \right)} }} \cdot \dfrac{{\sqrt {\left( {s - a} \right)\left( {s - b} \right)} }}{{\sqrt {s\left( {s - c} \right)} }} = \dfrac{1}{2}\]
\[ \Rightarrow \dfrac{{s - b}}{s} = \dfrac{1}{2}\]
\[ \Rightarrow 2\left( {s - b} \right) = s\]
\[ \Rightarrow 2s - 2b = s\]
\[ \Rightarrow s - 2b = 0\]
Substitute \[s = \dfrac{{a + b + c}}{2}\]
\[ \Rightarrow \dfrac{{a + b + c}}{2} - 2b = 0\]
\[ \Rightarrow a + b + c - 4b = 0\]
\[ \Rightarrow a - 3b + c = 0\]
Thus it is not an AP series.
Hence option D is the correct option.
Note:Students are often confused when they get \[a - 3b + c = 0\] by solving the given equation. They mark option A as a correct option but the condition of A.P. is \[a - 2b + c = 0\].
Formula used:
Half angle formulas:
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{bc}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
Trigonometry identity:
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
Complete step by step solution:
Given equation is \[\tan \dfrac{A}{2}\tan \dfrac{C}{2} = \dfrac{1}{2}\]
Apply the formula \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[\dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}} \cdot \dfrac{{\sin \dfrac{C}{2}}}{{\cos \dfrac{C}{2}}} = \dfrac{1}{2}\]
Now applying half angle formula
\[ \Rightarrow \dfrac{{\sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} }}{{\sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} }} \cdot \dfrac{{\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} }}{{\sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} }} = \dfrac{1}{2}\]
Simplify the above equation:
\[ \Rightarrow \dfrac{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)} }}{{\sqrt {s\left( {s - a} \right)} }} \cdot \dfrac{{\sqrt {\left( {s - a} \right)\left( {s - b} \right)} }}{{\sqrt {s\left( {s - c} \right)} }} = \dfrac{1}{2}\]
\[ \Rightarrow \dfrac{{s - b}}{s} = \dfrac{1}{2}\]
\[ \Rightarrow 2\left( {s - b} \right) = s\]
\[ \Rightarrow 2s - 2b = s\]
\[ \Rightarrow s - 2b = 0\]
Substitute \[s = \dfrac{{a + b + c}}{2}\]
\[ \Rightarrow \dfrac{{a + b + c}}{2} - 2b = 0\]
\[ \Rightarrow a + b + c - 4b = 0\]
\[ \Rightarrow a - 3b + c = 0\]
Thus it is not an AP series.
Hence option D is the correct option.
Note:Students are often confused when they get \[a - 3b + c = 0\] by solving the given equation. They mark option A as a correct option but the condition of A.P. is \[a - 2b + c = 0\].
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

