
In a triangle $\vartriangle ABC$, if $2s=a+b+c$, then the value of $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}=$
A. \[\sin A\]
B. $\cos A$
C. $\tan A$
D. None of these.
Answer
232.8k+ views
Hint: To solve this question we will derive the value of from equation $2s=a+b+c$and then put it into the equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}$. We will then simplify the equation using expansion formulas and other arithmetical operations and get an equation which will be formula for some angle.
Formula Used:
The expansion formulas are:
$\begin{align}
& {{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{(a-b)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
& (a+b)(a-b)={{a}^{2}}-{{b}^{2}}
\end{align}$
The cosine rule or Law of cosine are:
\[\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}=\cos A\]
Complete step-by-step solution:
We are given a triangle$\vartriangle ABC$and we have to find the value of equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}$ when $2s=a+b+c$.
We will first determine the value of $s$,
$s=\frac{a+b+c}{2}$
Now we will substitute this value of $s$in the given equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}$,
$\frac{\frac{a+b+c}{2}\left( \frac{a+b+c}{2}-a \right)}{bc}-\frac{\left( \frac{a+b+c}{2}-c \right)\left( \frac{a+b+c}{2}-b \right)}{bc}$
$=\frac{1}{bc}\left( \frac{a+b+c}{2}\left( \frac{a+b+c}{2}-a \right)-\left( \frac{a+b+c}{2}-c \right)\left( \frac{a+b+c}{2}-b \right) \right)$
$ =\frac{1}{bc}\left( \frac{a+b+c}{2}\left( \frac{b+c-a}{2} \right)-\left( \frac{a+b-c}{2} \right)\left( \frac{a+c-b}{2} \right) \right)$
$=\frac{1}{4bc}\left[ \left( (b+c)+a \right)((b+c)-a)-(a+(b-c)(a-(b-c) \right]$
Now let us assume $b+c=x$ and $b-c=y$, so
\[\begin{align}
& =\frac{1}{4bc}\left[ \left( x+a \right)(x-a)-(a+y)(a-y) \right] \\
& =\frac{1}{4bc}\left[ ({{x}^{2}}-{{a}^{2}})-({{a}^{2}}-{{y}^{2}}) \right] \\
& =\frac{1}{4bc}\left( {{x}^{2}}-{{a}^{2}}-{{a}^{2}}+{{y}^{2}} \right) \\
& =\frac{1}{4bc}\left( {{x}^{2}}-2{{a}^{2}}+{{y}^{2}} \right) \\
\end{align}\]
We will now substitute back the value of $x$ and $y$.
\[\begin{align}
& =\frac{1}{4bc}\left( {{(b+c)}^{2}}-2{{a}^{2}}+{{(b-c)}^{2}} \right) \\
& =\frac{1}{4bc}\left( {{b}^{2}}+{{c}^{2}}+2bc-2{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-2bc \right) \\
& =\frac{2{{b}^{2}}+2{{c}^{2}}-2{{a}^{2}}}{4bc} \\
& =\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \\
\end{align}\]
Now we know that this is the cosine rule for the angle $A$, so the equation will be reduced to,
$=\cos A$
The value of the equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}=$for the triangle $\vartriangle ABC$when $2s=a+b+c$, is $\cos A$. Hence the correct option is (B).
Note:
We could have solved the equation without assuming the values $b+c=x$ and $b-c=y$. But to simplify the equation we opted this method. We must form the equation in a way so that we could simplify it using the expansion formulas easily. We must also have the knowledge cosine rule so that we could comprehend that the derived equation at the end is a formula of $\cos A$.
The formula $2s=a+b+c$ which can be written as $s=\frac{a+b+c}{2}$ is the formula of the semi perimeter of the triangle.
Formula Used:
The expansion formulas are:
$\begin{align}
& {{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{(a-b)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
& (a+b)(a-b)={{a}^{2}}-{{b}^{2}}
\end{align}$
The cosine rule or Law of cosine are:
\[\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}=\cos A\]
Complete step-by-step solution:
We are given a triangle$\vartriangle ABC$and we have to find the value of equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}$ when $2s=a+b+c$.
We will first determine the value of $s$,
$s=\frac{a+b+c}{2}$
Now we will substitute this value of $s$in the given equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}$,
$\frac{\frac{a+b+c}{2}\left( \frac{a+b+c}{2}-a \right)}{bc}-\frac{\left( \frac{a+b+c}{2}-c \right)\left( \frac{a+b+c}{2}-b \right)}{bc}$
$=\frac{1}{bc}\left( \frac{a+b+c}{2}\left( \frac{a+b+c}{2}-a \right)-\left( \frac{a+b+c}{2}-c \right)\left( \frac{a+b+c}{2}-b \right) \right)$
$ =\frac{1}{bc}\left( \frac{a+b+c}{2}\left( \frac{b+c-a}{2} \right)-\left( \frac{a+b-c}{2} \right)\left( \frac{a+c-b}{2} \right) \right)$
$=\frac{1}{4bc}\left[ \left( (b+c)+a \right)((b+c)-a)-(a+(b-c)(a-(b-c) \right]$
Now let us assume $b+c=x$ and $b-c=y$, so
\[\begin{align}
& =\frac{1}{4bc}\left[ \left( x+a \right)(x-a)-(a+y)(a-y) \right] \\
& =\frac{1}{4bc}\left[ ({{x}^{2}}-{{a}^{2}})-({{a}^{2}}-{{y}^{2}}) \right] \\
& =\frac{1}{4bc}\left( {{x}^{2}}-{{a}^{2}}-{{a}^{2}}+{{y}^{2}} \right) \\
& =\frac{1}{4bc}\left( {{x}^{2}}-2{{a}^{2}}+{{y}^{2}} \right) \\
\end{align}\]
We will now substitute back the value of $x$ and $y$.
\[\begin{align}
& =\frac{1}{4bc}\left( {{(b+c)}^{2}}-2{{a}^{2}}+{{(b-c)}^{2}} \right) \\
& =\frac{1}{4bc}\left( {{b}^{2}}+{{c}^{2}}+2bc-2{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-2bc \right) \\
& =\frac{2{{b}^{2}}+2{{c}^{2}}-2{{a}^{2}}}{4bc} \\
& =\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \\
\end{align}\]
Now we know that this is the cosine rule for the angle $A$, so the equation will be reduced to,
$=\cos A$
The value of the equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}=$for the triangle $\vartriangle ABC$when $2s=a+b+c$, is $\cos A$. Hence the correct option is (B).
Note:
We could have solved the equation without assuming the values $b+c=x$ and $b-c=y$. But to simplify the equation we opted this method. We must form the equation in a way so that we could simplify it using the expansion formulas easily. We must also have the knowledge cosine rule so that we could comprehend that the derived equation at the end is a formula of $\cos A$.
The formula $2s=a+b+c$ which can be written as $s=\frac{a+b+c}{2}$ is the formula of the semi perimeter of the triangle.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

