
In a triangle $\vartriangle ABC$, if $2s=a+b+c$, then the value of $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}=$
A. \[\sin A\]
B. $\cos A$
C. $\tan A$
D. None of these.
Answer
162.3k+ views
Hint: To solve this question we will derive the value of from equation $2s=a+b+c$and then put it into the equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}$. We will then simplify the equation using expansion formulas and other arithmetical operations and get an equation which will be formula for some angle.
Formula Used:
The expansion formulas are:
$\begin{align}
& {{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{(a-b)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
& (a+b)(a-b)={{a}^{2}}-{{b}^{2}}
\end{align}$
The cosine rule or Law of cosine are:
\[\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}=\cos A\]
Complete step-by-step solution:
We are given a triangle$\vartriangle ABC$and we have to find the value of equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}$ when $2s=a+b+c$.
We will first determine the value of $s$,
$s=\frac{a+b+c}{2}$
Now we will substitute this value of $s$in the given equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}$,
$\frac{\frac{a+b+c}{2}\left( \frac{a+b+c}{2}-a \right)}{bc}-\frac{\left( \frac{a+b+c}{2}-c \right)\left( \frac{a+b+c}{2}-b \right)}{bc}$
$=\frac{1}{bc}\left( \frac{a+b+c}{2}\left( \frac{a+b+c}{2}-a \right)-\left( \frac{a+b+c}{2}-c \right)\left( \frac{a+b+c}{2}-b \right) \right)$
$ =\frac{1}{bc}\left( \frac{a+b+c}{2}\left( \frac{b+c-a}{2} \right)-\left( \frac{a+b-c}{2} \right)\left( \frac{a+c-b}{2} \right) \right)$
$=\frac{1}{4bc}\left[ \left( (b+c)+a \right)((b+c)-a)-(a+(b-c)(a-(b-c) \right]$
Now let us assume $b+c=x$ and $b-c=y$, so
\[\begin{align}
& =\frac{1}{4bc}\left[ \left( x+a \right)(x-a)-(a+y)(a-y) \right] \\
& =\frac{1}{4bc}\left[ ({{x}^{2}}-{{a}^{2}})-({{a}^{2}}-{{y}^{2}}) \right] \\
& =\frac{1}{4bc}\left( {{x}^{2}}-{{a}^{2}}-{{a}^{2}}+{{y}^{2}} \right) \\
& =\frac{1}{4bc}\left( {{x}^{2}}-2{{a}^{2}}+{{y}^{2}} \right) \\
\end{align}\]
We will now substitute back the value of $x$ and $y$.
\[\begin{align}
& =\frac{1}{4bc}\left( {{(b+c)}^{2}}-2{{a}^{2}}+{{(b-c)}^{2}} \right) \\
& =\frac{1}{4bc}\left( {{b}^{2}}+{{c}^{2}}+2bc-2{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-2bc \right) \\
& =\frac{2{{b}^{2}}+2{{c}^{2}}-2{{a}^{2}}}{4bc} \\
& =\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \\
\end{align}\]
Now we know that this is the cosine rule for the angle $A$, so the equation will be reduced to,
$=\cos A$
The value of the equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}=$for the triangle $\vartriangle ABC$when $2s=a+b+c$, is $\cos A$. Hence the correct option is (B).
Note:
We could have solved the equation without assuming the values $b+c=x$ and $b-c=y$. But to simplify the equation we opted this method. We must form the equation in a way so that we could simplify it using the expansion formulas easily. We must also have the knowledge cosine rule so that we could comprehend that the derived equation at the end is a formula of $\cos A$.
The formula $2s=a+b+c$ which can be written as $s=\frac{a+b+c}{2}$ is the formula of the semi perimeter of the triangle.
Formula Used:
The expansion formulas are:
$\begin{align}
& {{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{(a-b)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
& (a+b)(a-b)={{a}^{2}}-{{b}^{2}}
\end{align}$
The cosine rule or Law of cosine are:
\[\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}=\cos A\]
Complete step-by-step solution:
We are given a triangle$\vartriangle ABC$and we have to find the value of equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}$ when $2s=a+b+c$.
We will first determine the value of $s$,
$s=\frac{a+b+c}{2}$
Now we will substitute this value of $s$in the given equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}$,
$\frac{\frac{a+b+c}{2}\left( \frac{a+b+c}{2}-a \right)}{bc}-\frac{\left( \frac{a+b+c}{2}-c \right)\left( \frac{a+b+c}{2}-b \right)}{bc}$
$=\frac{1}{bc}\left( \frac{a+b+c}{2}\left( \frac{a+b+c}{2}-a \right)-\left( \frac{a+b+c}{2}-c \right)\left( \frac{a+b+c}{2}-b \right) \right)$
$ =\frac{1}{bc}\left( \frac{a+b+c}{2}\left( \frac{b+c-a}{2} \right)-\left( \frac{a+b-c}{2} \right)\left( \frac{a+c-b}{2} \right) \right)$
$=\frac{1}{4bc}\left[ \left( (b+c)+a \right)((b+c)-a)-(a+(b-c)(a-(b-c) \right]$
Now let us assume $b+c=x$ and $b-c=y$, so
\[\begin{align}
& =\frac{1}{4bc}\left[ \left( x+a \right)(x-a)-(a+y)(a-y) \right] \\
& =\frac{1}{4bc}\left[ ({{x}^{2}}-{{a}^{2}})-({{a}^{2}}-{{y}^{2}}) \right] \\
& =\frac{1}{4bc}\left( {{x}^{2}}-{{a}^{2}}-{{a}^{2}}+{{y}^{2}} \right) \\
& =\frac{1}{4bc}\left( {{x}^{2}}-2{{a}^{2}}+{{y}^{2}} \right) \\
\end{align}\]
We will now substitute back the value of $x$ and $y$.
\[\begin{align}
& =\frac{1}{4bc}\left( {{(b+c)}^{2}}-2{{a}^{2}}+{{(b-c)}^{2}} \right) \\
& =\frac{1}{4bc}\left( {{b}^{2}}+{{c}^{2}}+2bc-2{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-2bc \right) \\
& =\frac{2{{b}^{2}}+2{{c}^{2}}-2{{a}^{2}}}{4bc} \\
& =\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \\
\end{align}\]
Now we know that this is the cosine rule for the angle $A$, so the equation will be reduced to,
$=\cos A$
The value of the equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}=$for the triangle $\vartriangle ABC$when $2s=a+b+c$, is $\cos A$. Hence the correct option is (B).
Note:
We could have solved the equation without assuming the values $b+c=x$ and $b-c=y$. But to simplify the equation we opted this method. We must form the equation in a way so that we could simplify it using the expansion formulas easily. We must also have the knowledge cosine rule so that we could comprehend that the derived equation at the end is a formula of $\cos A$.
The formula $2s=a+b+c$ which can be written as $s=\frac{a+b+c}{2}$ is the formula of the semi perimeter of the triangle.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
