
In a triangle $\vartriangle ABC$, if $2s=a+b+c$, then the value of $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}=$
A. \[\sin A\]
B. $\cos A$
C. $\tan A$
D. None of these.
Answer
217.5k+ views
Hint: To solve this question we will derive the value of from equation $2s=a+b+c$and then put it into the equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}$. We will then simplify the equation using expansion formulas and other arithmetical operations and get an equation which will be formula for some angle.
Formula Used:
The expansion formulas are:
$\begin{align}
& {{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{(a-b)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
& (a+b)(a-b)={{a}^{2}}-{{b}^{2}}
\end{align}$
The cosine rule or Law of cosine are:
\[\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}=\cos A\]
Complete step-by-step solution:
We are given a triangle$\vartriangle ABC$and we have to find the value of equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}$ when $2s=a+b+c$.
We will first determine the value of $s$,
$s=\frac{a+b+c}{2}$
Now we will substitute this value of $s$in the given equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}$,
$\frac{\frac{a+b+c}{2}\left( \frac{a+b+c}{2}-a \right)}{bc}-\frac{\left( \frac{a+b+c}{2}-c \right)\left( \frac{a+b+c}{2}-b \right)}{bc}$
$=\frac{1}{bc}\left( \frac{a+b+c}{2}\left( \frac{a+b+c}{2}-a \right)-\left( \frac{a+b+c}{2}-c \right)\left( \frac{a+b+c}{2}-b \right) \right)$
$ =\frac{1}{bc}\left( \frac{a+b+c}{2}\left( \frac{b+c-a}{2} \right)-\left( \frac{a+b-c}{2} \right)\left( \frac{a+c-b}{2} \right) \right)$
$=\frac{1}{4bc}\left[ \left( (b+c)+a \right)((b+c)-a)-(a+(b-c)(a-(b-c) \right]$
Now let us assume $b+c=x$ and $b-c=y$, so
\[\begin{align}
& =\frac{1}{4bc}\left[ \left( x+a \right)(x-a)-(a+y)(a-y) \right] \\
& =\frac{1}{4bc}\left[ ({{x}^{2}}-{{a}^{2}})-({{a}^{2}}-{{y}^{2}}) \right] \\
& =\frac{1}{4bc}\left( {{x}^{2}}-{{a}^{2}}-{{a}^{2}}+{{y}^{2}} \right) \\
& =\frac{1}{4bc}\left( {{x}^{2}}-2{{a}^{2}}+{{y}^{2}} \right) \\
\end{align}\]
We will now substitute back the value of $x$ and $y$.
\[\begin{align}
& =\frac{1}{4bc}\left( {{(b+c)}^{2}}-2{{a}^{2}}+{{(b-c)}^{2}} \right) \\
& =\frac{1}{4bc}\left( {{b}^{2}}+{{c}^{2}}+2bc-2{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-2bc \right) \\
& =\frac{2{{b}^{2}}+2{{c}^{2}}-2{{a}^{2}}}{4bc} \\
& =\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \\
\end{align}\]
Now we know that this is the cosine rule for the angle $A$, so the equation will be reduced to,
$=\cos A$
The value of the equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}=$for the triangle $\vartriangle ABC$when $2s=a+b+c$, is $\cos A$. Hence the correct option is (B).
Note:
We could have solved the equation without assuming the values $b+c=x$ and $b-c=y$. But to simplify the equation we opted this method. We must form the equation in a way so that we could simplify it using the expansion formulas easily. We must also have the knowledge cosine rule so that we could comprehend that the derived equation at the end is a formula of $\cos A$.
The formula $2s=a+b+c$ which can be written as $s=\frac{a+b+c}{2}$ is the formula of the semi perimeter of the triangle.
Formula Used:
The expansion formulas are:
$\begin{align}
& {{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{(a-b)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
& (a+b)(a-b)={{a}^{2}}-{{b}^{2}}
\end{align}$
The cosine rule or Law of cosine are:
\[\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}=\cos A\]
Complete step-by-step solution:
We are given a triangle$\vartriangle ABC$and we have to find the value of equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}$ when $2s=a+b+c$.
We will first determine the value of $s$,
$s=\frac{a+b+c}{2}$
Now we will substitute this value of $s$in the given equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}$,
$\frac{\frac{a+b+c}{2}\left( \frac{a+b+c}{2}-a \right)}{bc}-\frac{\left( \frac{a+b+c}{2}-c \right)\left( \frac{a+b+c}{2}-b \right)}{bc}$
$=\frac{1}{bc}\left( \frac{a+b+c}{2}\left( \frac{a+b+c}{2}-a \right)-\left( \frac{a+b+c}{2}-c \right)\left( \frac{a+b+c}{2}-b \right) \right)$
$ =\frac{1}{bc}\left( \frac{a+b+c}{2}\left( \frac{b+c-a}{2} \right)-\left( \frac{a+b-c}{2} \right)\left( \frac{a+c-b}{2} \right) \right)$
$=\frac{1}{4bc}\left[ \left( (b+c)+a \right)((b+c)-a)-(a+(b-c)(a-(b-c) \right]$
Now let us assume $b+c=x$ and $b-c=y$, so
\[\begin{align}
& =\frac{1}{4bc}\left[ \left( x+a \right)(x-a)-(a+y)(a-y) \right] \\
& =\frac{1}{4bc}\left[ ({{x}^{2}}-{{a}^{2}})-({{a}^{2}}-{{y}^{2}}) \right] \\
& =\frac{1}{4bc}\left( {{x}^{2}}-{{a}^{2}}-{{a}^{2}}+{{y}^{2}} \right) \\
& =\frac{1}{4bc}\left( {{x}^{2}}-2{{a}^{2}}+{{y}^{2}} \right) \\
\end{align}\]
We will now substitute back the value of $x$ and $y$.
\[\begin{align}
& =\frac{1}{4bc}\left( {{(b+c)}^{2}}-2{{a}^{2}}+{{(b-c)}^{2}} \right) \\
& =\frac{1}{4bc}\left( {{b}^{2}}+{{c}^{2}}+2bc-2{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-2bc \right) \\
& =\frac{2{{b}^{2}}+2{{c}^{2}}-2{{a}^{2}}}{4bc} \\
& =\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc} \\
\end{align}\]
Now we know that this is the cosine rule for the angle $A$, so the equation will be reduced to,
$=\cos A$
The value of the equation $\frac{s(s-a)}{bc}-\frac{(s-c)(s-a)}{bc}=$for the triangle $\vartriangle ABC$when $2s=a+b+c$, is $\cos A$. Hence the correct option is (B).
Note:
We could have solved the equation without assuming the values $b+c=x$ and $b-c=y$. But to simplify the equation we opted this method. We must form the equation in a way so that we could simplify it using the expansion formulas easily. We must also have the knowledge cosine rule so that we could comprehend that the derived equation at the end is a formula of $\cos A$.
The formula $2s=a+b+c$ which can be written as $s=\frac{a+b+c}{2}$ is the formula of the semi perimeter of the triangle.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

