
In a triangle PQR, \[\angle R = \dfrac{\pi }{2}\]. If \[\tan \dfrac{P}{2}\] and \[\tan \dfrac{Q}{2}\] are the roots of the equation \[a{x^2} + bx + c = 0\left( {a \ne 0} \right)\], then which of the following is true?
A. \[a + b = c\]
B. \[b + c = a\]
C. \[a + c = b\]
D. \[b = c\]
Answer
161.7k+ views
Hint: We will apply the formula sum of roots and product of roots on the given equation. Then simplify these two equations by the property of the angles of the triangle and the tangent of difference between the two angles and solve these two to get the desired result.
Formula used:
The sum of roots of a quadratic equation \[A{x^2} + Bx + C = 0\] is \[ - \dfrac{B}{A}\].
The product of roots of a quadratic equation \[A{x^2} + Bx + C = 0\] is \[\dfrac{C}{A}\].
The formula of the tangent of difference between two angles:
\[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]
Complete step by step solution:
Given equation is \[a{x^2} + bx + c = 0\left( {a \ne 0} \right)\]
The sum of the two roots of the equation is \[ - \dfrac{b}{a}\].
The product of the two roots of the equation is \[\dfrac{c}{a}\].
Given that, \[\tan \dfrac{P}{2}\] and \[\tan \dfrac{Q}{2}\] are the roots of the equation \[a{x^2} + bx + c = 0\left( {a \ne 0} \right)\].
Therefore, \[\tan \dfrac{P}{2} + \tan \dfrac{Q}{2} = - \dfrac{b}{a}\] ….(i)
\[\tan \dfrac{P}{2}\tan \dfrac{Q}{2} = \dfrac{c}{a}\] …..(ii)
We know that the sum of all angles of triangle is \[\pi \].
Thus,\[P + Q + R = \pi \]
Substitute \[\angle R = \dfrac{\pi }{2}\] in the above equation:
\[ \Rightarrow P + Q + \dfrac{\pi }{2} = \pi \]
\[ \Rightarrow Q = \pi - \dfrac{\pi }{2} - P\]
\[ \Rightarrow Q = \dfrac{\pi }{2} - P\]
Substitute \[Q = \dfrac{\pi }{2} - P\]in equation (i)
\[\tan \dfrac{P}{2} + \tan \dfrac{{\dfrac{\pi }{2} - P}}{2} = - \dfrac{b}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2} + \tan \left( {\dfrac{\pi }{4} - \dfrac{P}{2}} \right) = - \dfrac{b}{a}\]
Now applying the formula of the tangent of difference between two angles:
\[ \Rightarrow \tan \dfrac{P}{2} + \dfrac{{\tan \dfrac{\pi }{4} - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{\pi }{4}\tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2} + \dfrac{{1 - \tan \dfrac{P}{2}}}{{1 + 1 \cdot \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \dfrac{{\tan \dfrac{P}{2}\left( {1 + \tan \dfrac{P}{2}} \right) + 1 - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \dfrac{{\tan \dfrac{P}{2} + {{\tan }^2}\dfrac{P}{2} + 1 - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}\dfrac{P}{2} + 1}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\] …..(iii)
Now we will simplify equation (ii)
\[\tan \dfrac{P}{2}\tan \dfrac{Q}{2} = \dfrac{c}{a}\]
Substitute \[Q = \dfrac{\pi }{2} - P\]in above equation:
\[\tan \dfrac{P}{2}\tan \dfrac{{\dfrac{\pi }{2} - P}}{2} = \dfrac{c}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2}\tan \dfrac{{\dfrac{\pi }{2} - P}}{2} = \dfrac{c}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2}\tan \left( {\dfrac{\pi }{4} - \dfrac{P}{2}} \right) = \dfrac{c}{a}\]
Now applying the formula of the tangent of difference between two angles:
\[ \Rightarrow \tan \dfrac{P}{2}\dfrac{{\tan \dfrac{\pi }{4} - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{\pi }{4}\tan \dfrac{P}{2}}} = \dfrac{c}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2} \cdot \dfrac{{1 - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = \dfrac{c}{a}\]
\[ \Rightarrow \dfrac{{\tan \dfrac{P}{2} - {{\tan }^2}\dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = \dfrac{c}{a}\]….(iv)
Add equation (iii) and (iv)
\[\dfrac{{{{\tan }^2}\dfrac{P}{2} + 1}}{{1 + \tan \dfrac{P}{2}}} + \dfrac{{\tan \dfrac{P}{2} - {{\tan }^2}\dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}\dfrac{P}{2} + 1 + \tan \dfrac{P}{2} - {{\tan }^2}\dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow \dfrac{{1 + \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow 1 = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow c - b = a\]
\[ \Rightarrow a + b = c\]
Hence option A is the correct option.
Note: Students often mistake to apply the sum of roots and product of roots. They take the sum of roots is \[ - \dfrac{b}{c}\] and product of roots is \[\dfrac{a}{c}\] which are incorrect formula. The correct formula are the sum of roots is \[ - \dfrac{b}{a}\] and product of roots is \[\dfrac{c}{a}\].
Formula used:
The sum of roots of a quadratic equation \[A{x^2} + Bx + C = 0\] is \[ - \dfrac{B}{A}\].
The product of roots of a quadratic equation \[A{x^2} + Bx + C = 0\] is \[\dfrac{C}{A}\].
The formula of the tangent of difference between two angles:
\[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]
Complete step by step solution:
Given equation is \[a{x^2} + bx + c = 0\left( {a \ne 0} \right)\]
The sum of the two roots of the equation is \[ - \dfrac{b}{a}\].
The product of the two roots of the equation is \[\dfrac{c}{a}\].
Given that, \[\tan \dfrac{P}{2}\] and \[\tan \dfrac{Q}{2}\] are the roots of the equation \[a{x^2} + bx + c = 0\left( {a \ne 0} \right)\].
Therefore, \[\tan \dfrac{P}{2} + \tan \dfrac{Q}{2} = - \dfrac{b}{a}\] ….(i)
\[\tan \dfrac{P}{2}\tan \dfrac{Q}{2} = \dfrac{c}{a}\] …..(ii)
We know that the sum of all angles of triangle is \[\pi \].
Thus,\[P + Q + R = \pi \]
Substitute \[\angle R = \dfrac{\pi }{2}\] in the above equation:
\[ \Rightarrow P + Q + \dfrac{\pi }{2} = \pi \]
\[ \Rightarrow Q = \pi - \dfrac{\pi }{2} - P\]
\[ \Rightarrow Q = \dfrac{\pi }{2} - P\]
Substitute \[Q = \dfrac{\pi }{2} - P\]in equation (i)
\[\tan \dfrac{P}{2} + \tan \dfrac{{\dfrac{\pi }{2} - P}}{2} = - \dfrac{b}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2} + \tan \left( {\dfrac{\pi }{4} - \dfrac{P}{2}} \right) = - \dfrac{b}{a}\]
Now applying the formula of the tangent of difference between two angles:
\[ \Rightarrow \tan \dfrac{P}{2} + \dfrac{{\tan \dfrac{\pi }{4} - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{\pi }{4}\tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2} + \dfrac{{1 - \tan \dfrac{P}{2}}}{{1 + 1 \cdot \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \dfrac{{\tan \dfrac{P}{2}\left( {1 + \tan \dfrac{P}{2}} \right) + 1 - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \dfrac{{\tan \dfrac{P}{2} + {{\tan }^2}\dfrac{P}{2} + 1 - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}\dfrac{P}{2} + 1}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\] …..(iii)
Now we will simplify equation (ii)
\[\tan \dfrac{P}{2}\tan \dfrac{Q}{2} = \dfrac{c}{a}\]
Substitute \[Q = \dfrac{\pi }{2} - P\]in above equation:
\[\tan \dfrac{P}{2}\tan \dfrac{{\dfrac{\pi }{2} - P}}{2} = \dfrac{c}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2}\tan \dfrac{{\dfrac{\pi }{2} - P}}{2} = \dfrac{c}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2}\tan \left( {\dfrac{\pi }{4} - \dfrac{P}{2}} \right) = \dfrac{c}{a}\]
Now applying the formula of the tangent of difference between two angles:
\[ \Rightarrow \tan \dfrac{P}{2}\dfrac{{\tan \dfrac{\pi }{4} - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{\pi }{4}\tan \dfrac{P}{2}}} = \dfrac{c}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2} \cdot \dfrac{{1 - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = \dfrac{c}{a}\]
\[ \Rightarrow \dfrac{{\tan \dfrac{P}{2} - {{\tan }^2}\dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = \dfrac{c}{a}\]….(iv)
Add equation (iii) and (iv)
\[\dfrac{{{{\tan }^2}\dfrac{P}{2} + 1}}{{1 + \tan \dfrac{P}{2}}} + \dfrac{{\tan \dfrac{P}{2} - {{\tan }^2}\dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}\dfrac{P}{2} + 1 + \tan \dfrac{P}{2} - {{\tan }^2}\dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow \dfrac{{1 + \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow 1 = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow c - b = a\]
\[ \Rightarrow a + b = c\]
Hence option A is the correct option.
Note: Students often mistake to apply the sum of roots and product of roots. They take the sum of roots is \[ - \dfrac{b}{c}\] and product of roots is \[\dfrac{a}{c}\] which are incorrect formula. The correct formula are the sum of roots is \[ - \dfrac{b}{a}\] and product of roots is \[\dfrac{c}{a}\].
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
