
In a triangle PQR, \[\angle R = \dfrac{\pi }{2}\]. If \[\tan \dfrac{P}{2}\] and \[\tan \dfrac{Q}{2}\] are the roots of the equation \[a{x^2} + bx + c = 0\left( {a \ne 0} \right)\], then which of the following is true?
A. \[a + b = c\]
B. \[b + c = a\]
C. \[a + c = b\]
D. \[b = c\]
Answer
216.3k+ views
Hint: We will apply the formula sum of roots and product of roots on the given equation. Then simplify these two equations by the property of the angles of the triangle and the tangent of difference between the two angles and solve these two to get the desired result.
Formula used:
The sum of roots of a quadratic equation \[A{x^2} + Bx + C = 0\] is \[ - \dfrac{B}{A}\].
The product of roots of a quadratic equation \[A{x^2} + Bx + C = 0\] is \[\dfrac{C}{A}\].
The formula of the tangent of difference between two angles:
\[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]
Complete step by step solution:
Given equation is \[a{x^2} + bx + c = 0\left( {a \ne 0} \right)\]
The sum of the two roots of the equation is \[ - \dfrac{b}{a}\].
The product of the two roots of the equation is \[\dfrac{c}{a}\].
Given that, \[\tan \dfrac{P}{2}\] and \[\tan \dfrac{Q}{2}\] are the roots of the equation \[a{x^2} + bx + c = 0\left( {a \ne 0} \right)\].
Therefore, \[\tan \dfrac{P}{2} + \tan \dfrac{Q}{2} = - \dfrac{b}{a}\] ….(i)
\[\tan \dfrac{P}{2}\tan \dfrac{Q}{2} = \dfrac{c}{a}\] …..(ii)
We know that the sum of all angles of triangle is \[\pi \].
Thus,\[P + Q + R = \pi \]
Substitute \[\angle R = \dfrac{\pi }{2}\] in the above equation:
\[ \Rightarrow P + Q + \dfrac{\pi }{2} = \pi \]
\[ \Rightarrow Q = \pi - \dfrac{\pi }{2} - P\]
\[ \Rightarrow Q = \dfrac{\pi }{2} - P\]
Substitute \[Q = \dfrac{\pi }{2} - P\]in equation (i)
\[\tan \dfrac{P}{2} + \tan \dfrac{{\dfrac{\pi }{2} - P}}{2} = - \dfrac{b}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2} + \tan \left( {\dfrac{\pi }{4} - \dfrac{P}{2}} \right) = - \dfrac{b}{a}\]
Now applying the formula of the tangent of difference between two angles:
\[ \Rightarrow \tan \dfrac{P}{2} + \dfrac{{\tan \dfrac{\pi }{4} - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{\pi }{4}\tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2} + \dfrac{{1 - \tan \dfrac{P}{2}}}{{1 + 1 \cdot \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \dfrac{{\tan \dfrac{P}{2}\left( {1 + \tan \dfrac{P}{2}} \right) + 1 - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \dfrac{{\tan \dfrac{P}{2} + {{\tan }^2}\dfrac{P}{2} + 1 - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}\dfrac{P}{2} + 1}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\] …..(iii)
Now we will simplify equation (ii)
\[\tan \dfrac{P}{2}\tan \dfrac{Q}{2} = \dfrac{c}{a}\]
Substitute \[Q = \dfrac{\pi }{2} - P\]in above equation:
\[\tan \dfrac{P}{2}\tan \dfrac{{\dfrac{\pi }{2} - P}}{2} = \dfrac{c}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2}\tan \dfrac{{\dfrac{\pi }{2} - P}}{2} = \dfrac{c}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2}\tan \left( {\dfrac{\pi }{4} - \dfrac{P}{2}} \right) = \dfrac{c}{a}\]
Now applying the formula of the tangent of difference between two angles:
\[ \Rightarrow \tan \dfrac{P}{2}\dfrac{{\tan \dfrac{\pi }{4} - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{\pi }{4}\tan \dfrac{P}{2}}} = \dfrac{c}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2} \cdot \dfrac{{1 - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = \dfrac{c}{a}\]
\[ \Rightarrow \dfrac{{\tan \dfrac{P}{2} - {{\tan }^2}\dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = \dfrac{c}{a}\]….(iv)
Add equation (iii) and (iv)
\[\dfrac{{{{\tan }^2}\dfrac{P}{2} + 1}}{{1 + \tan \dfrac{P}{2}}} + \dfrac{{\tan \dfrac{P}{2} - {{\tan }^2}\dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}\dfrac{P}{2} + 1 + \tan \dfrac{P}{2} - {{\tan }^2}\dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow \dfrac{{1 + \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow 1 = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow c - b = a\]
\[ \Rightarrow a + b = c\]
Hence option A is the correct option.
Note: Students often mistake to apply the sum of roots and product of roots. They take the sum of roots is \[ - \dfrac{b}{c}\] and product of roots is \[\dfrac{a}{c}\] which are incorrect formula. The correct formula are the sum of roots is \[ - \dfrac{b}{a}\] and product of roots is \[\dfrac{c}{a}\].
Formula used:
The sum of roots of a quadratic equation \[A{x^2} + Bx + C = 0\] is \[ - \dfrac{B}{A}\].
The product of roots of a quadratic equation \[A{x^2} + Bx + C = 0\] is \[\dfrac{C}{A}\].
The formula of the tangent of difference between two angles:
\[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]
Complete step by step solution:
Given equation is \[a{x^2} + bx + c = 0\left( {a \ne 0} \right)\]
The sum of the two roots of the equation is \[ - \dfrac{b}{a}\].
The product of the two roots of the equation is \[\dfrac{c}{a}\].
Given that, \[\tan \dfrac{P}{2}\] and \[\tan \dfrac{Q}{2}\] are the roots of the equation \[a{x^2} + bx + c = 0\left( {a \ne 0} \right)\].
Therefore, \[\tan \dfrac{P}{2} + \tan \dfrac{Q}{2} = - \dfrac{b}{a}\] ….(i)
\[\tan \dfrac{P}{2}\tan \dfrac{Q}{2} = \dfrac{c}{a}\] …..(ii)
We know that the sum of all angles of triangle is \[\pi \].
Thus,\[P + Q + R = \pi \]
Substitute \[\angle R = \dfrac{\pi }{2}\] in the above equation:
\[ \Rightarrow P + Q + \dfrac{\pi }{2} = \pi \]
\[ \Rightarrow Q = \pi - \dfrac{\pi }{2} - P\]
\[ \Rightarrow Q = \dfrac{\pi }{2} - P\]
Substitute \[Q = \dfrac{\pi }{2} - P\]in equation (i)
\[\tan \dfrac{P}{2} + \tan \dfrac{{\dfrac{\pi }{2} - P}}{2} = - \dfrac{b}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2} + \tan \left( {\dfrac{\pi }{4} - \dfrac{P}{2}} \right) = - \dfrac{b}{a}\]
Now applying the formula of the tangent of difference between two angles:
\[ \Rightarrow \tan \dfrac{P}{2} + \dfrac{{\tan \dfrac{\pi }{4} - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{\pi }{4}\tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2} + \dfrac{{1 - \tan \dfrac{P}{2}}}{{1 + 1 \cdot \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \dfrac{{\tan \dfrac{P}{2}\left( {1 + \tan \dfrac{P}{2}} \right) + 1 - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \dfrac{{\tan \dfrac{P}{2} + {{\tan }^2}\dfrac{P}{2} + 1 - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}\dfrac{P}{2} + 1}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a}\] …..(iii)
Now we will simplify equation (ii)
\[\tan \dfrac{P}{2}\tan \dfrac{Q}{2} = \dfrac{c}{a}\]
Substitute \[Q = \dfrac{\pi }{2} - P\]in above equation:
\[\tan \dfrac{P}{2}\tan \dfrac{{\dfrac{\pi }{2} - P}}{2} = \dfrac{c}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2}\tan \dfrac{{\dfrac{\pi }{2} - P}}{2} = \dfrac{c}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2}\tan \left( {\dfrac{\pi }{4} - \dfrac{P}{2}} \right) = \dfrac{c}{a}\]
Now applying the formula of the tangent of difference between two angles:
\[ \Rightarrow \tan \dfrac{P}{2}\dfrac{{\tan \dfrac{\pi }{4} - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{\pi }{4}\tan \dfrac{P}{2}}} = \dfrac{c}{a}\]
\[ \Rightarrow \tan \dfrac{P}{2} \cdot \dfrac{{1 - \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = \dfrac{c}{a}\]
\[ \Rightarrow \dfrac{{\tan \dfrac{P}{2} - {{\tan }^2}\dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = \dfrac{c}{a}\]….(iv)
Add equation (iii) and (iv)
\[\dfrac{{{{\tan }^2}\dfrac{P}{2} + 1}}{{1 + \tan \dfrac{P}{2}}} + \dfrac{{\tan \dfrac{P}{2} - {{\tan }^2}\dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow \dfrac{{{{\tan }^2}\dfrac{P}{2} + 1 + \tan \dfrac{P}{2} - {{\tan }^2}\dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow \dfrac{{1 + \tan \dfrac{P}{2}}}{{1 + \tan \dfrac{P}{2}}} = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow 1 = - \dfrac{b}{a} + \dfrac{c}{a}\]
\[ \Rightarrow c - b = a\]
\[ \Rightarrow a + b = c\]
Hence option A is the correct option.
Note: Students often mistake to apply the sum of roots and product of roots. They take the sum of roots is \[ - \dfrac{b}{c}\] and product of roots is \[\dfrac{a}{c}\] which are incorrect formula. The correct formula are the sum of roots is \[ - \dfrac{b}{a}\] and product of roots is \[\dfrac{c}{a}\].
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

