
In a triangle $ABC$, if $\tan\dfrac{A}{2} = \dfrac{5}{6}$, and $\tan\dfrac{C}{2} = \dfrac{2}{5}$. Then find which of the following statements is true.
A. $a, c$, and $b$ are in AP.
B. $a, b$, and $c$ are in GP.
C. $b, a$, and $c$ are in AP.
D. $a, b$, and $c$ are in AP.
Answer
218.4k+ views
Hint: To calculate half angles, use the tangent of a trigonometric function and its half angle formula. Substituting the given values after multiplying the half angles To arrive at the required answer, simplify the equation in the end and check the common ratio or difference between $a, $b, and $c$.
Formula Used:
The half angle formula of tan for a triangle with sides $a, b$, and $c$, and the semi-perimeter $s$.
$\tan\dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $
$\tan\dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
$\tan\dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $
Complete step by step solution:
Given: In a triangle $ABC$, $\tan\dfrac{A}{2} = \dfrac{5}{6}$, and $\tan\dfrac{C}{2} = \dfrac{2}{5}$.
Let $s$ be the semi-perimeter and $a, b$, and $c$ be the lengths of opposite sides of the angles $A,B$, and $C$ respectively of a triangle $ABC$.
Apply the half angle formula to calculate the values of $\tan\dfrac{A}{2}$, and $\tan\dfrac{C}{2}$.
$\tan\dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $ $.....\left( 1 \right)$
$\tan\dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $ $.....\left( 2 \right)$
Now multiply equation $\left( 1 \right)$ by equation $\left( 2 \right)$.
$\tan\dfrac{A}{2} \times \tan\dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $
Substitute the given values of the half angles.
$\dfrac{5}{6} \times \dfrac{2}{5} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}} \times \dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $ [Since $\sqrt a \times \sqrt b = \sqrt {ab} $]
Cancel out the common terms from numerator and denominator.
$\dfrac{1}{3} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - b} \right)}}{{s \times s}}} $
$ \Rightarrow $$\dfrac{1}{3} = \sqrt {\dfrac{{{{\left( {s - b} \right)}^2}}}{{{s^2}}}} $
$ \Rightarrow \dfrac{1}{3} = \dfrac{{\left( {s - b} \right)}}{s}$
Simplify the above equation.
$s = 3\left( {s - b} \right)$
$ \Rightarrow s = 3s - 3b$
$ \Rightarrow 2s = 3b$
Substitute the value of the semi-perimeter in the above equation.
$2\left( {\dfrac{{a + b + c}}{2}} \right) = 3b$
$ \Rightarrow a + b + c = 3b$
$ \Rightarrow a + c = 2b$
Since the sum of $a$ and $c$ is equal to the two times $b$.
This is the condition of the three numbers in arithmetic progression.
So, $a, b$, and $c$ are in arithmetic progression.
Option ‘D’ is correct
Note: An arithmetic series is a sequence in which each consecutive element is obtained by adding or subtracting the preceding element by a constant. The constant value is called a common difference.
The general form of an arithmetic series is $a, a + d, a + 2d, a + 3d,...$. Where $a$ is the first term and $d$ is a common difference.
If three numbers $x, y, z$ are in arithmetic progression, then $x + z = 2y$.
Formula Used:
The half angle formula of tan for a triangle with sides $a, b$, and $c$, and the semi-perimeter $s$.
$\tan\dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $
$\tan\dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
$\tan\dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $
Complete step by step solution:
Given: In a triangle $ABC$, $\tan\dfrac{A}{2} = \dfrac{5}{6}$, and $\tan\dfrac{C}{2} = \dfrac{2}{5}$.
Let $s$ be the semi-perimeter and $a, b$, and $c$ be the lengths of opposite sides of the angles $A,B$, and $C$ respectively of a triangle $ABC$.
Apply the half angle formula to calculate the values of $\tan\dfrac{A}{2}$, and $\tan\dfrac{C}{2}$.
$\tan\dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $ $.....\left( 1 \right)$
$\tan\dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $ $.....\left( 2 \right)$
Now multiply equation $\left( 1 \right)$ by equation $\left( 2 \right)$.
$\tan\dfrac{A}{2} \times \tan\dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $
Substitute the given values of the half angles.
$\dfrac{5}{6} \times \dfrac{2}{5} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}} \times \dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $ [Since $\sqrt a \times \sqrt b = \sqrt {ab} $]
Cancel out the common terms from numerator and denominator.
$\dfrac{1}{3} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - b} \right)}}{{s \times s}}} $
$ \Rightarrow $$\dfrac{1}{3} = \sqrt {\dfrac{{{{\left( {s - b} \right)}^2}}}{{{s^2}}}} $
$ \Rightarrow \dfrac{1}{3} = \dfrac{{\left( {s - b} \right)}}{s}$
Simplify the above equation.
$s = 3\left( {s - b} \right)$
$ \Rightarrow s = 3s - 3b$
$ \Rightarrow 2s = 3b$
Substitute the value of the semi-perimeter in the above equation.
$2\left( {\dfrac{{a + b + c}}{2}} \right) = 3b$
$ \Rightarrow a + b + c = 3b$
$ \Rightarrow a + c = 2b$
Since the sum of $a$ and $c$ is equal to the two times $b$.
This is the condition of the three numbers in arithmetic progression.
So, $a, b$, and $c$ are in arithmetic progression.
Option ‘D’ is correct
Note: An arithmetic series is a sequence in which each consecutive element is obtained by adding or subtracting the preceding element by a constant. The constant value is called a common difference.
The general form of an arithmetic series is $a, a + d, a + 2d, a + 3d,...$. Where $a$ is the first term and $d$ is a common difference.
If three numbers $x, y, z$ are in arithmetic progression, then $x + z = 2y$.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

