
In a triangle \[ABC\], find the value of the expression\[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right)\;\].
A. \[1\]
B. \[\dfrac{c}{a}\]
C. \[\dfrac{a}{c}\]
D. None of these
Answer
216.3k+ views
Hint: In the given question, we need to find the value of an expression\[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right)\;\]. For this, we need to use the property of a triangle such that the sum of all the angles of a triangle is \[{180^ \circ }\]. Also, we will use the following trigonometric identities to get the desired result.
Formula used:
The following trigonometric properties are used for solving this question.
\[\sin \left( {{{180}^ \circ } - \theta } \right) = \sin \theta \] and \[\cos ec\theta = \dfrac{1}{{\sin \theta }}\]
Complete step by step solution:
We know that in \[\Delta ABC\], \[\angle A + \angle B + \angle C = {180^ \circ }\]
Now, we will find the value of an expression \[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right)\;\].
Here, we know that \[\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right)\; = \sin \left( {B + C} \right)\]
Thus, we get
\[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right) = cosec{\rm{ }}A{\rm{ }}\left( {sin\left( {B + C} \right)} \right)\;\]
But \[\angle B + \angle C = {180^ \circ } - \angle A\]
\[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right) = cosec{\rm{ }}A{\rm{ }}\left( {sin\left( {{{180}^ \circ } - A} \right)} \right)\]
Also, we know that \[\sin \left( {{{180}^ \circ } - A} \right) = \sin A\]
So, we get
\[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right) = cosec{\rm{ }}A{\rm{ }}\left( {\sin A} \right)\]
But \[\cos ecA = \dfrac{1}{{\sin A}}\]
Finally, we get
\[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right) = \dfrac{1}{{\sin A}}{\rm{ }}\left( {\sin A} \right)\]
This gives \[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right) = 1\]
Hence, In a triangle \[ABC\], the value of the expression \[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right)\;\]is \[1\].
Therefore, the correct option is (A).
Additional information: Trigonometric identities are equalities in trigonometry that are valid for any value of the occurring variables at which both halves of the equation are specified. In simple words, the trigonometric identities are equalities using trigonometric functions that remain true for any value of the variables involved, hence defining both halves of the equality.
Sin, cos, and tan are the three primary trigonometric ratios whereas sec, cosec, and cot are the secondary trigonometric ratios. Also, all the trigonometric identities are associated with the right angled triangle. The trigonometric identities are useful to simplify complex and tricky trigonometric expressions.
Note: Many students make mistakes in solving calculation parts and applying trigonometric identities. This is the only way through which we can solve the example in the simplest way. To use proper trigonometric identities is necessary for solving trigonometric problems as this makes them simple.
Formula used:
The following trigonometric properties are used for solving this question.
\[\sin \left( {{{180}^ \circ } - \theta } \right) = \sin \theta \] and \[\cos ec\theta = \dfrac{1}{{\sin \theta }}\]
Complete step by step solution:
We know that in \[\Delta ABC\], \[\angle A + \angle B + \angle C = {180^ \circ }\]
Now, we will find the value of an expression \[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right)\;\].
Here, we know that \[\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right)\; = \sin \left( {B + C} \right)\]
Thus, we get
\[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right) = cosec{\rm{ }}A{\rm{ }}\left( {sin\left( {B + C} \right)} \right)\;\]
But \[\angle B + \angle C = {180^ \circ } - \angle A\]
\[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right) = cosec{\rm{ }}A{\rm{ }}\left( {sin\left( {{{180}^ \circ } - A} \right)} \right)\]
Also, we know that \[\sin \left( {{{180}^ \circ } - A} \right) = \sin A\]
So, we get
\[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right) = cosec{\rm{ }}A{\rm{ }}\left( {\sin A} \right)\]
But \[\cos ecA = \dfrac{1}{{\sin A}}\]
Finally, we get
\[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right) = \dfrac{1}{{\sin A}}{\rm{ }}\left( {\sin A} \right)\]
This gives \[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right) = 1\]
Hence, In a triangle \[ABC\], the value of the expression \[cosec{\rm{ }}A{\rm{ }}\left( {sinB{\rm{ }}cosC{\rm{ }} + {\rm{ }}cosB{\rm{ }}sinC} \right)\;\]is \[1\].
Therefore, the correct option is (A).
Additional information: Trigonometric identities are equalities in trigonometry that are valid for any value of the occurring variables at which both halves of the equation are specified. In simple words, the trigonometric identities are equalities using trigonometric functions that remain true for any value of the variables involved, hence defining both halves of the equality.
Sin, cos, and tan are the three primary trigonometric ratios whereas sec, cosec, and cot are the secondary trigonometric ratios. Also, all the trigonometric identities are associated with the right angled triangle. The trigonometric identities are useful to simplify complex and tricky trigonometric expressions.
Note: Many students make mistakes in solving calculation parts and applying trigonometric identities. This is the only way through which we can solve the example in the simplest way. To use proper trigonometric identities is necessary for solving trigonometric problems as this makes them simple.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

