
In a triangle \[ABC\], find the value of \[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C\].
A. 0
B. \[{a^2} + {b^2} + {c^2}\]
C. \[2\left( {{a^2} + {b^2} + {c^2}} \right)\]
D. \[\dfrac{1}{{2abc}}\]
Answer
164.4k+ views
Hint: First, we will apply the basic trigonometric ratio \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\] . Then, substitute the values in the equation by using the laws of sines and cosines. Solve the equation and get the required answer.
Formula used:
Trigonometric ratio: \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
In a triangle \[ABC\],
Law of sines: \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\]
Law of cosines:
\[\cos A = \dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}\]
\[\cos B = \dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}\]
\[\cos C = \dfrac{{{a^2} + b{}^2 - {c^2}}}{{2ab}}\]
Complete step by step solution:
The triangle \[ABC\] is given.
Let’s solve the given equation.
Apply the basic ratio of trigonometry \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\].
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \left( {{b^2} - {c^2}} \right)\dfrac{{\cos A}}{{\sin A}} + \left( {{c^2} - {a^2}} \right)\dfrac{{\cos B}}{{\sin B}} + \left( {{a^2} - {b^2}} \right)\dfrac{{\cos C}}{{\sin C}}\]
Substitute the values of sine and cosine angles by using the laws of sines and cosines.
We get,
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \left( {{b^2} - {c^2}} \right)\dfrac{{\dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}}}{{ka}} + \left( {{c^2} - {a^2}} \right)\dfrac{{\dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}}}{{kb}} + \left( {{a^2} - {b^2}} \right)\dfrac{{\dfrac{{{a^2} + b{}^2 - {c^2}}}{{2ab}}}}{{kc}}\]
\[ \Rightarrow \left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \left( {{b^2} - {c^2}} \right)\dfrac{{{b^2} + c{}^2 - {a^2}}}{{2kabc}} + \left( {{c^2} - {a^2}} \right)\dfrac{{{c^2} + a{}^2 - {b^2}}}{{2kabc}} + \left( {{a^2} - {b^2}} \right)\dfrac{{{a^2} + b{}^2 - {c^2}}}{{2kabc}}\]
Factor out the common terms from the right-hand side.
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \dfrac{1}{{2kabc}}\left[ {\left( {{b^2} - {c^2}} \right)\left( {{b^2} + c{}^2 - {a^2}} \right) + \left( {{c^2} - {a^2}} \right)\left( {{c^2} + a{}^2 - {b^2}} \right) + \left( {{a^2} - {b^2}} \right)\left( {{a^2} + b{}^2 - {c^2}} \right)} \right]\]
Solve the right-hand side of the above equation.
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \dfrac{1}{{2kabc}}\left[ {\left( {{b^4} - {c^4} - {a^2}{b^2} + {a^2}c{}^2} \right) + \left( {{c^4} - {a^4} - {b^2}{c^2} + {a^2}b{}^2} \right) + \left( {{a^4} - {b^4} - {a^2}{c^2} + {b^2}c{}^2} \right)} \right]\]
\[ \Rightarrow \left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \dfrac{1}{{2kabc}}\left[ 0 \right]\]
\[ \Rightarrow \left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = 0\]
Hence the correct option is A.
Note: The law of sine or the sine law states that the ratio of the side length of a triangle to the sine of the opposite angle, is the same for all three sides.
The law of cosines is used to find an unknown side of a triangle given the value of two sides and their included angle or to find an unknown angle given three sides of a triangle.
Formula used:
Trigonometric ratio: \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
In a triangle \[ABC\],
Law of sines: \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\]
Law of cosines:
\[\cos A = \dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}\]
\[\cos B = \dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}\]
\[\cos C = \dfrac{{{a^2} + b{}^2 - {c^2}}}{{2ab}}\]
Complete step by step solution:
The triangle \[ABC\] is given.
Let’s solve the given equation.
Apply the basic ratio of trigonometry \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\].
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \left( {{b^2} - {c^2}} \right)\dfrac{{\cos A}}{{\sin A}} + \left( {{c^2} - {a^2}} \right)\dfrac{{\cos B}}{{\sin B}} + \left( {{a^2} - {b^2}} \right)\dfrac{{\cos C}}{{\sin C}}\]
Substitute the values of sine and cosine angles by using the laws of sines and cosines.
We get,
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \left( {{b^2} - {c^2}} \right)\dfrac{{\dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}}}{{ka}} + \left( {{c^2} - {a^2}} \right)\dfrac{{\dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}}}{{kb}} + \left( {{a^2} - {b^2}} \right)\dfrac{{\dfrac{{{a^2} + b{}^2 - {c^2}}}{{2ab}}}}{{kc}}\]
\[ \Rightarrow \left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \left( {{b^2} - {c^2}} \right)\dfrac{{{b^2} + c{}^2 - {a^2}}}{{2kabc}} + \left( {{c^2} - {a^2}} \right)\dfrac{{{c^2} + a{}^2 - {b^2}}}{{2kabc}} + \left( {{a^2} - {b^2}} \right)\dfrac{{{a^2} + b{}^2 - {c^2}}}{{2kabc}}\]
Factor out the common terms from the right-hand side.
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \dfrac{1}{{2kabc}}\left[ {\left( {{b^2} - {c^2}} \right)\left( {{b^2} + c{}^2 - {a^2}} \right) + \left( {{c^2} - {a^2}} \right)\left( {{c^2} + a{}^2 - {b^2}} \right) + \left( {{a^2} - {b^2}} \right)\left( {{a^2} + b{}^2 - {c^2}} \right)} \right]\]
Solve the right-hand side of the above equation.
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \dfrac{1}{{2kabc}}\left[ {\left( {{b^4} - {c^4} - {a^2}{b^2} + {a^2}c{}^2} \right) + \left( {{c^4} - {a^4} - {b^2}{c^2} + {a^2}b{}^2} \right) + \left( {{a^4} - {b^4} - {a^2}{c^2} + {b^2}c{}^2} \right)} \right]\]
\[ \Rightarrow \left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \dfrac{1}{{2kabc}}\left[ 0 \right]\]
\[ \Rightarrow \left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = 0\]
Hence the correct option is A.
Note: The law of sine or the sine law states that the ratio of the side length of a triangle to the sine of the opposite angle, is the same for all three sides.
The law of cosines is used to find an unknown side of a triangle given the value of two sides and their included angle or to find an unknown angle given three sides of a triangle.
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
