
In a triangle \[ABC\], find the value of \[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C\].
A. 0
B. \[{a^2} + {b^2} + {c^2}\]
C. \[2\left( {{a^2} + {b^2} + {c^2}} \right)\]
D. \[\dfrac{1}{{2abc}}\]
Answer
232.8k+ views
Hint: First, we will apply the basic trigonometric ratio \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\] . Then, substitute the values in the equation by using the laws of sines and cosines. Solve the equation and get the required answer.
Formula used:
Trigonometric ratio: \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
In a triangle \[ABC\],
Law of sines: \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\]
Law of cosines:
\[\cos A = \dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}\]
\[\cos B = \dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}\]
\[\cos C = \dfrac{{{a^2} + b{}^2 - {c^2}}}{{2ab}}\]
Complete step by step solution:
The triangle \[ABC\] is given.
Let’s solve the given equation.
Apply the basic ratio of trigonometry \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\].
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \left( {{b^2} - {c^2}} \right)\dfrac{{\cos A}}{{\sin A}} + \left( {{c^2} - {a^2}} \right)\dfrac{{\cos B}}{{\sin B}} + \left( {{a^2} - {b^2}} \right)\dfrac{{\cos C}}{{\sin C}}\]
Substitute the values of sine and cosine angles by using the laws of sines and cosines.
We get,
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \left( {{b^2} - {c^2}} \right)\dfrac{{\dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}}}{{ka}} + \left( {{c^2} - {a^2}} \right)\dfrac{{\dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}}}{{kb}} + \left( {{a^2} - {b^2}} \right)\dfrac{{\dfrac{{{a^2} + b{}^2 - {c^2}}}{{2ab}}}}{{kc}}\]
\[ \Rightarrow \left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \left( {{b^2} - {c^2}} \right)\dfrac{{{b^2} + c{}^2 - {a^2}}}{{2kabc}} + \left( {{c^2} - {a^2}} \right)\dfrac{{{c^2} + a{}^2 - {b^2}}}{{2kabc}} + \left( {{a^2} - {b^2}} \right)\dfrac{{{a^2} + b{}^2 - {c^2}}}{{2kabc}}\]
Factor out the common terms from the right-hand side.
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \dfrac{1}{{2kabc}}\left[ {\left( {{b^2} - {c^2}} \right)\left( {{b^2} + c{}^2 - {a^2}} \right) + \left( {{c^2} - {a^2}} \right)\left( {{c^2} + a{}^2 - {b^2}} \right) + \left( {{a^2} - {b^2}} \right)\left( {{a^2} + b{}^2 - {c^2}} \right)} \right]\]
Solve the right-hand side of the above equation.
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \dfrac{1}{{2kabc}}\left[ {\left( {{b^4} - {c^4} - {a^2}{b^2} + {a^2}c{}^2} \right) + \left( {{c^4} - {a^4} - {b^2}{c^2} + {a^2}b{}^2} \right) + \left( {{a^4} - {b^4} - {a^2}{c^2} + {b^2}c{}^2} \right)} \right]\]
\[ \Rightarrow \left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \dfrac{1}{{2kabc}}\left[ 0 \right]\]
\[ \Rightarrow \left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = 0\]
Hence the correct option is A.
Note: The law of sine or the sine law states that the ratio of the side length of a triangle to the sine of the opposite angle, is the same for all three sides.
The law of cosines is used to find an unknown side of a triangle given the value of two sides and their included angle or to find an unknown angle given three sides of a triangle.
Formula used:
Trigonometric ratio: \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
In a triangle \[ABC\],
Law of sines: \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\]
Law of cosines:
\[\cos A = \dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}\]
\[\cos B = \dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}\]
\[\cos C = \dfrac{{{a^2} + b{}^2 - {c^2}}}{{2ab}}\]
Complete step by step solution:
The triangle \[ABC\] is given.
Let’s solve the given equation.
Apply the basic ratio of trigonometry \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\].
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \left( {{b^2} - {c^2}} \right)\dfrac{{\cos A}}{{\sin A}} + \left( {{c^2} - {a^2}} \right)\dfrac{{\cos B}}{{\sin B}} + \left( {{a^2} - {b^2}} \right)\dfrac{{\cos C}}{{\sin C}}\]
Substitute the values of sine and cosine angles by using the laws of sines and cosines.
We get,
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \left( {{b^2} - {c^2}} \right)\dfrac{{\dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}}}{{ka}} + \left( {{c^2} - {a^2}} \right)\dfrac{{\dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}}}{{kb}} + \left( {{a^2} - {b^2}} \right)\dfrac{{\dfrac{{{a^2} + b{}^2 - {c^2}}}{{2ab}}}}{{kc}}\]
\[ \Rightarrow \left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \left( {{b^2} - {c^2}} \right)\dfrac{{{b^2} + c{}^2 - {a^2}}}{{2kabc}} + \left( {{c^2} - {a^2}} \right)\dfrac{{{c^2} + a{}^2 - {b^2}}}{{2kabc}} + \left( {{a^2} - {b^2}} \right)\dfrac{{{a^2} + b{}^2 - {c^2}}}{{2kabc}}\]
Factor out the common terms from the right-hand side.
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \dfrac{1}{{2kabc}}\left[ {\left( {{b^2} - {c^2}} \right)\left( {{b^2} + c{}^2 - {a^2}} \right) + \left( {{c^2} - {a^2}} \right)\left( {{c^2} + a{}^2 - {b^2}} \right) + \left( {{a^2} - {b^2}} \right)\left( {{a^2} + b{}^2 - {c^2}} \right)} \right]\]
Solve the right-hand side of the above equation.
\[\left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \dfrac{1}{{2kabc}}\left[ {\left( {{b^4} - {c^4} - {a^2}{b^2} + {a^2}c{}^2} \right) + \left( {{c^4} - {a^4} - {b^2}{c^2} + {a^2}b{}^2} \right) + \left( {{a^4} - {b^4} - {a^2}{c^2} + {b^2}c{}^2} \right)} \right]\]
\[ \Rightarrow \left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = \dfrac{1}{{2kabc}}\left[ 0 \right]\]
\[ \Rightarrow \left( {{b^2} - {c^2}} \right)\cot A + \left( {{c^2} - {a^2}} \right)\cot B + \left( {{a^2} - {b^2}} \right)\cot C = 0\]
Hence the correct option is A.
Note: The law of sine or the sine law states that the ratio of the side length of a triangle to the sine of the opposite angle, is the same for all three sides.
The law of cosines is used to find an unknown side of a triangle given the value of two sides and their included angle or to find an unknown angle given three sides of a triangle.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Maths Chapter 9 Straight Lines (2025-26)

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Collisions: Types and Examples for Students

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

If 16 identical pencils are distributed among 4 children class 11 maths JEE_Advanced

