
In a triangle \[ABC\], find the value of \[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}}\] .
A. \[\dfrac{{a - b}}{{a - c}}\]
B. \[\dfrac{{a + b}}{{a + c}}\]
C. \[\dfrac{{{a^2} - {b^2}}}{{{a^2} - {c^2}}}\]
D. \[\dfrac{{{a^2} + {b^2}}}{{{a^2} + {c^2}}}\]
Answer
164.4k+ views
Hint: First, simplify the numerator and denominator by using the equation of the sum of angles of a triangle and \[\cos\left( {\pi - \theta } \right) = - \cos \theta \]. Then, apply the trigonometric identity \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2}A - \sin^{2}B\] to both the numerator and denominator. After that, use the trigonometric formula \[\cos^{2}A + \sin^{2}A = 1\] to simplify the equation. In the end, apply the law of sines and solve the equation to get the required answer.
Formula used:
\[\cos\left( {\pi - \theta } \right) = - \cos \theta \]
\[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2}A - \sin^{2}B\]
Law of sines: In a triangle \[ABC\], \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\]
Complete step by step solution:
The triangle \[ABC\] is given.
We know that the sum of the internal angles of any triangle is \[180^ {\circ }\].
Then,
\[A + B + C = 180^ {\circ } = \pi \]
Let’s simplify the required equation using the sum of the angles.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 + \cos\left( {A - B} \right)\cos\left( {\pi - \left( {A + B} \right)} \right)}}{{1 + \cos\left( {A - C} \right)\cos\left( {\pi - \left( {A + C} \right)} \right)}}\]
Apply the trigonometric identity \[\cos\left( {\pi - \theta } \right) = - \cos \theta \].
We get,
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \cos\left( {A - B} \right) \cos\left( {A + B} \right)}}{{1 - \cos\left( {A - C} \right)\cos\left( {A + C} \right)}}\]
Now apply the trigonometric formula \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2}A - \sin^{2}B\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \left( {\cos^{2}A - \sin^{2}B} \right)}}{{1 - \left( {\cos^{2}A - \sin^{2}C} \right)}}\]
\[ \Rightarrow \dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \cos^{2}A + \sin^{2}B}}{{1 - \cos^{2}A + \sin^{2}C}}\]
Use the trigonometric identity \[\cos^{2}A + \sin^{2}A = 1\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{\sin^{2}A + \sin^{2}B}}{{\sin^{2}A + \sin^{2}C}}\]
Now apply the law of sines \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{k^2}{a^2} + {k^2}{b^2}}}{{{k^2}{a^2} + {k^2}{c^2}}}\]
Factor out the common terms.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{k^2}\left( {{a^2} + {b^2}} \right)}}{{{k^2}\left( {{a^2} + {c^2}} \right)}}\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{a^2} + {b^2}}}{{{a^2} + {c^2}}}\]
Hence the correct option is D.
Note: Some students try to solve the given question by solving the cosine formula. But it is not the correct way to solve the question. It will lead us to complex equations.
Formula used:
\[\cos\left( {\pi - \theta } \right) = - \cos \theta \]
\[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2}A - \sin^{2}B\]
Law of sines: In a triangle \[ABC\], \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\]
Complete step by step solution:
The triangle \[ABC\] is given.
We know that the sum of the internal angles of any triangle is \[180^ {\circ }\].
Then,
\[A + B + C = 180^ {\circ } = \pi \]
Let’s simplify the required equation using the sum of the angles.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 + \cos\left( {A - B} \right)\cos\left( {\pi - \left( {A + B} \right)} \right)}}{{1 + \cos\left( {A - C} \right)\cos\left( {\pi - \left( {A + C} \right)} \right)}}\]
Apply the trigonometric identity \[\cos\left( {\pi - \theta } \right) = - \cos \theta \].
We get,
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \cos\left( {A - B} \right) \cos\left( {A + B} \right)}}{{1 - \cos\left( {A - C} \right)\cos\left( {A + C} \right)}}\]
Now apply the trigonometric formula \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2}A - \sin^{2}B\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \left( {\cos^{2}A - \sin^{2}B} \right)}}{{1 - \left( {\cos^{2}A - \sin^{2}C} \right)}}\]
\[ \Rightarrow \dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \cos^{2}A + \sin^{2}B}}{{1 - \cos^{2}A + \sin^{2}C}}\]
Use the trigonometric identity \[\cos^{2}A + \sin^{2}A = 1\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{\sin^{2}A + \sin^{2}B}}{{\sin^{2}A + \sin^{2}C}}\]
Now apply the law of sines \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{k^2}{a^2} + {k^2}{b^2}}}{{{k^2}{a^2} + {k^2}{c^2}}}\]
Factor out the common terms.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{k^2}\left( {{a^2} + {b^2}} \right)}}{{{k^2}\left( {{a^2} + {c^2}} \right)}}\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{a^2} + {b^2}}}{{{a^2} + {c^2}}}\]
Hence the correct option is D.
Note: Some students try to solve the given question by solving the cosine formula. But it is not the correct way to solve the question. It will lead us to complex equations.
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main Physics Kinematics for JEE Main 2025

Difference Between Natural and Whole Numbers: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
