
In a triangle \[ABC\], find the value of \[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}}\] .
A. \[\dfrac{{a - b}}{{a - c}}\]
B. \[\dfrac{{a + b}}{{a + c}}\]
C. \[\dfrac{{{a^2} - {b^2}}}{{{a^2} - {c^2}}}\]
D. \[\dfrac{{{a^2} + {b^2}}}{{{a^2} + {c^2}}}\]
Answer
162.3k+ views
Hint: First, simplify the numerator and denominator by using the equation of the sum of angles of a triangle and \[\cos\left( {\pi - \theta } \right) = - \cos \theta \]. Then, apply the trigonometric identity \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2}A - \sin^{2}B\] to both the numerator and denominator. After that, use the trigonometric formula \[\cos^{2}A + \sin^{2}A = 1\] to simplify the equation. In the end, apply the law of sines and solve the equation to get the required answer.
Formula used:
\[\cos\left( {\pi - \theta } \right) = - \cos \theta \]
\[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2}A - \sin^{2}B\]
Law of sines: In a triangle \[ABC\], \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\]
Complete step by step solution:
The triangle \[ABC\] is given.
We know that the sum of the internal angles of any triangle is \[180^ {\circ }\].
Then,
\[A + B + C = 180^ {\circ } = \pi \]
Let’s simplify the required equation using the sum of the angles.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 + \cos\left( {A - B} \right)\cos\left( {\pi - \left( {A + B} \right)} \right)}}{{1 + \cos\left( {A - C} \right)\cos\left( {\pi - \left( {A + C} \right)} \right)}}\]
Apply the trigonometric identity \[\cos\left( {\pi - \theta } \right) = - \cos \theta \].
We get,
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \cos\left( {A - B} \right) \cos\left( {A + B} \right)}}{{1 - \cos\left( {A - C} \right)\cos\left( {A + C} \right)}}\]
Now apply the trigonometric formula \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2}A - \sin^{2}B\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \left( {\cos^{2}A - \sin^{2}B} \right)}}{{1 - \left( {\cos^{2}A - \sin^{2}C} \right)}}\]
\[ \Rightarrow \dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \cos^{2}A + \sin^{2}B}}{{1 - \cos^{2}A + \sin^{2}C}}\]
Use the trigonometric identity \[\cos^{2}A + \sin^{2}A = 1\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{\sin^{2}A + \sin^{2}B}}{{\sin^{2}A + \sin^{2}C}}\]
Now apply the law of sines \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{k^2}{a^2} + {k^2}{b^2}}}{{{k^2}{a^2} + {k^2}{c^2}}}\]
Factor out the common terms.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{k^2}\left( {{a^2} + {b^2}} \right)}}{{{k^2}\left( {{a^2} + {c^2}} \right)}}\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{a^2} + {b^2}}}{{{a^2} + {c^2}}}\]
Hence the correct option is D.
Note: Some students try to solve the given question by solving the cosine formula. But it is not the correct way to solve the question. It will lead us to complex equations.
Formula used:
\[\cos\left( {\pi - \theta } \right) = - \cos \theta \]
\[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2}A - \sin^{2}B\]
Law of sines: In a triangle \[ABC\], \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\]
Complete step by step solution:
The triangle \[ABC\] is given.
We know that the sum of the internal angles of any triangle is \[180^ {\circ }\].
Then,
\[A + B + C = 180^ {\circ } = \pi \]
Let’s simplify the required equation using the sum of the angles.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 + \cos\left( {A - B} \right)\cos\left( {\pi - \left( {A + B} \right)} \right)}}{{1 + \cos\left( {A - C} \right)\cos\left( {\pi - \left( {A + C} \right)} \right)}}\]
Apply the trigonometric identity \[\cos\left( {\pi - \theta } \right) = - \cos \theta \].
We get,
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \cos\left( {A - B} \right) \cos\left( {A + B} \right)}}{{1 - \cos\left( {A - C} \right)\cos\left( {A + C} \right)}}\]
Now apply the trigonometric formula \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2}A - \sin^{2}B\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \left( {\cos^{2}A - \sin^{2}B} \right)}}{{1 - \left( {\cos^{2}A - \sin^{2}C} \right)}}\]
\[ \Rightarrow \dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \cos^{2}A + \sin^{2}B}}{{1 - \cos^{2}A + \sin^{2}C}}\]
Use the trigonometric identity \[\cos^{2}A + \sin^{2}A = 1\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{\sin^{2}A + \sin^{2}B}}{{\sin^{2}A + \sin^{2}C}}\]
Now apply the law of sines \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{k^2}{a^2} + {k^2}{b^2}}}{{{k^2}{a^2} + {k^2}{c^2}}}\]
Factor out the common terms.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{k^2}\left( {{a^2} + {b^2}} \right)}}{{{k^2}\left( {{a^2} + {c^2}} \right)}}\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{a^2} + {b^2}}}{{{a^2} + {c^2}}}\]
Hence the correct option is D.
Note: Some students try to solve the given question by solving the cosine formula. But it is not the correct way to solve the question. It will lead us to complex equations.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
