
In a triangle \[ABC\], find the value of \[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}}\] .
A. \[\dfrac{{a - b}}{{a - c}}\]
B. \[\dfrac{{a + b}}{{a + c}}\]
C. \[\dfrac{{{a^2} - {b^2}}}{{{a^2} - {c^2}}}\]
D. \[\dfrac{{{a^2} + {b^2}}}{{{a^2} + {c^2}}}\]
Answer
232.8k+ views
Hint: First, simplify the numerator and denominator by using the equation of the sum of angles of a triangle and \[\cos\left( {\pi - \theta } \right) = - \cos \theta \]. Then, apply the trigonometric identity \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2}A - \sin^{2}B\] to both the numerator and denominator. After that, use the trigonometric formula \[\cos^{2}A + \sin^{2}A = 1\] to simplify the equation. In the end, apply the law of sines and solve the equation to get the required answer.
Formula used:
\[\cos\left( {\pi - \theta } \right) = - \cos \theta \]
\[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2}A - \sin^{2}B\]
Law of sines: In a triangle \[ABC\], \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\]
Complete step by step solution:
The triangle \[ABC\] is given.
We know that the sum of the internal angles of any triangle is \[180^ {\circ }\].
Then,
\[A + B + C = 180^ {\circ } = \pi \]
Let’s simplify the required equation using the sum of the angles.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 + \cos\left( {A - B} \right)\cos\left( {\pi - \left( {A + B} \right)} \right)}}{{1 + \cos\left( {A - C} \right)\cos\left( {\pi - \left( {A + C} \right)} \right)}}\]
Apply the trigonometric identity \[\cos\left( {\pi - \theta } \right) = - \cos \theta \].
We get,
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \cos\left( {A - B} \right) \cos\left( {A + B} \right)}}{{1 - \cos\left( {A - C} \right)\cos\left( {A + C} \right)}}\]
Now apply the trigonometric formula \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2}A - \sin^{2}B\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \left( {\cos^{2}A - \sin^{2}B} \right)}}{{1 - \left( {\cos^{2}A - \sin^{2}C} \right)}}\]
\[ \Rightarrow \dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \cos^{2}A + \sin^{2}B}}{{1 - \cos^{2}A + \sin^{2}C}}\]
Use the trigonometric identity \[\cos^{2}A + \sin^{2}A = 1\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{\sin^{2}A + \sin^{2}B}}{{\sin^{2}A + \sin^{2}C}}\]
Now apply the law of sines \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{k^2}{a^2} + {k^2}{b^2}}}{{{k^2}{a^2} + {k^2}{c^2}}}\]
Factor out the common terms.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{k^2}\left( {{a^2} + {b^2}} \right)}}{{{k^2}\left( {{a^2} + {c^2}} \right)}}\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{a^2} + {b^2}}}{{{a^2} + {c^2}}}\]
Hence the correct option is D.
Note: Some students try to solve the given question by solving the cosine formula. But it is not the correct way to solve the question. It will lead us to complex equations.
Formula used:
\[\cos\left( {\pi - \theta } \right) = - \cos \theta \]
\[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2}A - \sin^{2}B\]
Law of sines: In a triangle \[ABC\], \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\]
Complete step by step solution:
The triangle \[ABC\] is given.
We know that the sum of the internal angles of any triangle is \[180^ {\circ }\].
Then,
\[A + B + C = 180^ {\circ } = \pi \]
Let’s simplify the required equation using the sum of the angles.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 + \cos\left( {A - B} \right)\cos\left( {\pi - \left( {A + B} \right)} \right)}}{{1 + \cos\left( {A - C} \right)\cos\left( {\pi - \left( {A + C} \right)} \right)}}\]
Apply the trigonometric identity \[\cos\left( {\pi - \theta } \right) = - \cos \theta \].
We get,
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \cos\left( {A - B} \right) \cos\left( {A + B} \right)}}{{1 - \cos\left( {A - C} \right)\cos\left( {A + C} \right)}}\]
Now apply the trigonometric formula \[\cos\left( {A + B} \right)\cos\left( {A - B} \right) = \cos^{2}A - \sin^{2}B\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \left( {\cos^{2}A - \sin^{2}B} \right)}}{{1 - \left( {\cos^{2}A - \sin^{2}C} \right)}}\]
\[ \Rightarrow \dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{1 - \cos^{2}A + \sin^{2}B}}{{1 - \cos^{2}A + \sin^{2}C}}\]
Use the trigonometric identity \[\cos^{2}A + \sin^{2}A = 1\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{\sin^{2}A + \sin^{2}B}}{{\sin^{2}A + \sin^{2}C}}\]
Now apply the law of sines \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\].
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{k^2}{a^2} + {k^2}{b^2}}}{{{k^2}{a^2} + {k^2}{c^2}}}\]
Factor out the common terms.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{k^2}\left( {{a^2} + {b^2}} \right)}}{{{k^2}\left( {{a^2} + {c^2}} \right)}}\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{1 + \cos\left( {A - B} \right)\cos C}}{{1 + \cos\left( {A - C} \right)\cos B}} = \dfrac{{{a^2} + {b^2}}}{{{a^2} + {c^2}}}\]
Hence the correct option is D.
Note: Some students try to solve the given question by solving the cosine formula. But it is not the correct way to solve the question. It will lead us to complex equations.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

