
In a transverse wave the distance between a crest and through at the same place is $1.0{\rm{ cm}}$. The next crest appears at the same place after the interval of $0.4\;{\rm{s}}$. The maximum speed of the vibrating particles in the medium is:
A) $\dfrac{{3\pi }}{2}{\rm{cm/s}}$
B) $\dfrac{{5\pi }}{2}{\rm{cm/s}}$
C) $\dfrac{\pi }{2}{\rm{cm/s}}$
D) $2\pi \;{\rm{cm/s}}$
Answer
149.4k+ views
Hint: The maximum speed of the vibrating particles can be calculated with the help of the general equation of a wave. If we differentiate the general equation of a wave, we can get the general equation of velocity.
Complete step by step solution:
The distance between the crest and trough is $1.0{\rm{ cm}}$ which means that the amplitude is half of $1.0{\rm{ cm}}$. This can evaluate the value of amplitude as given below,
$A$ = $\dfrac{{1{\rm{ cm}}}}{2}\\$
$A$ = $0.5\;{\rm{cm}}$
The interval at which the next crest appears is nothing but the time period, therefore, the time period of the given wave is $0.4\;{\rm{s}}$.
We can calculate the value of angular frequency with the help of time period.
$\omega = \dfrac{{2\pi }}{T}$
We will now substitute the known values in the above equation of angular frequency.
$\omega = \dfrac{{2\pi }}{{0.4\;{\rm{s}}}}\\$
$\Rightarrow$ $5\pi \;{\rm{rad/s}}$
Here, the time interval is $T$.
We know that the general equation of a wave is given as $y = A\sin( \omega t + kx)$.
So, for maximum velocity, we will differentiate the above equation with respect to time.
$v$ = $\dfrac{{dy}}{{dt}}\\$
$\Rightarrow$ $\dfrac{{d\left( {A\sin \omega t + kx} \right)}}{{dt}}\\$
$\Rightarrow$ $A\omega \left( {\cos \omega t + kx} \right)$
The maximum value of the equation is \[{v_{\max }} = A\omega \].
The equation of maximum velocity is evaluated and now we can substitute the values to get maximum velocity.
${v_{\max }} = 0.5 \times 5\pi \\$
$\Rightarrow$ $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$
Thus, the maximum speed of the vibrating particles in the given medium is calculated to be $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$.
Thus, From the given options, only option B is correct.
Note: The step in which the equation for maximum velocity comes to be \[A\omega \] is a tricky method. We should remember that the maximum value of any sine or cosine function is 1, so in order to get maximum value of the equation \[A\omega \left( {\cos \omega t + kx} \right)\], the cosine function is taken as 1.
Complete step by step solution:
The distance between the crest and trough is $1.0{\rm{ cm}}$ which means that the amplitude is half of $1.0{\rm{ cm}}$. This can evaluate the value of amplitude as given below,
$A$ = $\dfrac{{1{\rm{ cm}}}}{2}\\$
$A$ = $0.5\;{\rm{cm}}$
The interval at which the next crest appears is nothing but the time period, therefore, the time period of the given wave is $0.4\;{\rm{s}}$.
We can calculate the value of angular frequency with the help of time period.
$\omega = \dfrac{{2\pi }}{T}$
We will now substitute the known values in the above equation of angular frequency.
$\omega = \dfrac{{2\pi }}{{0.4\;{\rm{s}}}}\\$
$\Rightarrow$ $5\pi \;{\rm{rad/s}}$
Here, the time interval is $T$.
We know that the general equation of a wave is given as $y = A\sin( \omega t + kx)$.
So, for maximum velocity, we will differentiate the above equation with respect to time.
$v$ = $\dfrac{{dy}}{{dt}}\\$
$\Rightarrow$ $\dfrac{{d\left( {A\sin \omega t + kx} \right)}}{{dt}}\\$
$\Rightarrow$ $A\omega \left( {\cos \omega t + kx} \right)$
The maximum value of the equation is \[{v_{\max }} = A\omega \].
The equation of maximum velocity is evaluated and now we can substitute the values to get maximum velocity.
${v_{\max }} = 0.5 \times 5\pi \\$
$\Rightarrow$ $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$
Thus, the maximum speed of the vibrating particles in the given medium is calculated to be $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$.
Thus, From the given options, only option B is correct.
Note: The step in which the equation for maximum velocity comes to be \[A\omega \] is a tricky method. We should remember that the maximum value of any sine or cosine function is 1, so in order to get maximum value of the equation \[A\omega \left( {\cos \omega t + kx} \right)\], the cosine function is taken as 1.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Charging and Discharging of Capacitor

Ideal and Non-Ideal Solutions Raoult's Law - JEE

The time period of an artificial satellite in a circular class 11 physics JEE_Main

JEE Main Chemistry Question Paper with Answer Keys and Solutions

A pressure of 100 kPa causes a decrease in volume of class 11 physics JEE_Main

Other Pages
List of Fastest Century In IPL - Cricket League and FAQs

JEE Main Response Sheet 2025 Released – Download Links, and Check Latest Updates

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

NEET Physics Syllabus 2025 FREE PDF: Important Topics and Weightage

List of 10 Fastest Centuries in ODIs - Players and Countries

NCERT Solutions for Class 9 Maths Updated for 2024-25 Exam | Free PDF
