
In a transverse wave the distance between a crest and through at the same place is $1.0{\rm{ cm}}$. The next crest appears at the same place after the interval of $0.4\;{\rm{s}}$. The maximum speed of the vibrating particles in the medium is:
A) $\dfrac{{3\pi }}{2}{\rm{cm/s}}$
B) $\dfrac{{5\pi }}{2}{\rm{cm/s}}$
C) $\dfrac{\pi }{2}{\rm{cm/s}}$
D) $2\pi \;{\rm{cm/s}}$
Answer
218.1k+ views
Hint: The maximum speed of the vibrating particles can be calculated with the help of the general equation of a wave. If we differentiate the general equation of a wave, we can get the general equation of velocity.
Complete step by step solution:
The distance between the crest and trough is $1.0{\rm{ cm}}$ which means that the amplitude is half of $1.0{\rm{ cm}}$. This can evaluate the value of amplitude as given below,
$A$ = $\dfrac{{1{\rm{ cm}}}}{2}\\$
$A$ = $0.5\;{\rm{cm}}$
The interval at which the next crest appears is nothing but the time period, therefore, the time period of the given wave is $0.4\;{\rm{s}}$.
We can calculate the value of angular frequency with the help of time period.
$\omega = \dfrac{{2\pi }}{T}$
We will now substitute the known values in the above equation of angular frequency.
$\omega = \dfrac{{2\pi }}{{0.4\;{\rm{s}}}}\\$
$\Rightarrow$ $5\pi \;{\rm{rad/s}}$
Here, the time interval is $T$.
We know that the general equation of a wave is given as $y = A\sin( \omega t + kx)$.
So, for maximum velocity, we will differentiate the above equation with respect to time.
$v$ = $\dfrac{{dy}}{{dt}}\\$
$\Rightarrow$ $\dfrac{{d\left( {A\sin \omega t + kx} \right)}}{{dt}}\\$
$\Rightarrow$ $A\omega \left( {\cos \omega t + kx} \right)$
The maximum value of the equation is \[{v_{\max }} = A\omega \].
The equation of maximum velocity is evaluated and now we can substitute the values to get maximum velocity.
${v_{\max }} = 0.5 \times 5\pi \\$
$\Rightarrow$ $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$
Thus, the maximum speed of the vibrating particles in the given medium is calculated to be $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$.
Thus, From the given options, only option B is correct.
Note: The step in which the equation for maximum velocity comes to be \[A\omega \] is a tricky method. We should remember that the maximum value of any sine or cosine function is 1, so in order to get maximum value of the equation \[A\omega \left( {\cos \omega t + kx} \right)\], the cosine function is taken as 1.
Complete step by step solution:
The distance between the crest and trough is $1.0{\rm{ cm}}$ which means that the amplitude is half of $1.0{\rm{ cm}}$. This can evaluate the value of amplitude as given below,
$A$ = $\dfrac{{1{\rm{ cm}}}}{2}\\$
$A$ = $0.5\;{\rm{cm}}$
The interval at which the next crest appears is nothing but the time period, therefore, the time period of the given wave is $0.4\;{\rm{s}}$.
We can calculate the value of angular frequency with the help of time period.
$\omega = \dfrac{{2\pi }}{T}$
We will now substitute the known values in the above equation of angular frequency.
$\omega = \dfrac{{2\pi }}{{0.4\;{\rm{s}}}}\\$
$\Rightarrow$ $5\pi \;{\rm{rad/s}}$
Here, the time interval is $T$.
We know that the general equation of a wave is given as $y = A\sin( \omega t + kx)$.
So, for maximum velocity, we will differentiate the above equation with respect to time.
$v$ = $\dfrac{{dy}}{{dt}}\\$
$\Rightarrow$ $\dfrac{{d\left( {A\sin \omega t + kx} \right)}}{{dt}}\\$
$\Rightarrow$ $A\omega \left( {\cos \omega t + kx} \right)$
The maximum value of the equation is \[{v_{\max }} = A\omega \].
The equation of maximum velocity is evaluated and now we can substitute the values to get maximum velocity.
${v_{\max }} = 0.5 \times 5\pi \\$
$\Rightarrow$ $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$
Thus, the maximum speed of the vibrating particles in the given medium is calculated to be $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$.
Thus, From the given options, only option B is correct.
Note: The step in which the equation for maximum velocity comes to be \[A\omega \] is a tricky method. We should remember that the maximum value of any sine or cosine function is 1, so in order to get maximum value of the equation \[A\omega \left( {\cos \omega t + kx} \right)\], the cosine function is taken as 1.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

