
In a transverse wave the distance between a crest and through at the same place is $1.0{\rm{ cm}}$. The next crest appears at the same place after the interval of $0.4\;{\rm{s}}$. The maximum speed of the vibrating particles in the medium is:
A) $\dfrac{{3\pi }}{2}{\rm{cm/s}}$
B) $\dfrac{{5\pi }}{2}{\rm{cm/s}}$
C) $\dfrac{\pi }{2}{\rm{cm/s}}$
D) $2\pi \;{\rm{cm/s}}$
Answer
154.8k+ views
Hint: The maximum speed of the vibrating particles can be calculated with the help of the general equation of a wave. If we differentiate the general equation of a wave, we can get the general equation of velocity.
Complete step by step solution:
The distance between the crest and trough is $1.0{\rm{ cm}}$ which means that the amplitude is half of $1.0{\rm{ cm}}$. This can evaluate the value of amplitude as given below,
$A$ = $\dfrac{{1{\rm{ cm}}}}{2}\\$
$A$ = $0.5\;{\rm{cm}}$
The interval at which the next crest appears is nothing but the time period, therefore, the time period of the given wave is $0.4\;{\rm{s}}$.
We can calculate the value of angular frequency with the help of time period.
$\omega = \dfrac{{2\pi }}{T}$
We will now substitute the known values in the above equation of angular frequency.
$\omega = \dfrac{{2\pi }}{{0.4\;{\rm{s}}}}\\$
$\Rightarrow$ $5\pi \;{\rm{rad/s}}$
Here, the time interval is $T$.
We know that the general equation of a wave is given as $y = A\sin( \omega t + kx)$.
So, for maximum velocity, we will differentiate the above equation with respect to time.
$v$ = $\dfrac{{dy}}{{dt}}\\$
$\Rightarrow$ $\dfrac{{d\left( {A\sin \omega t + kx} \right)}}{{dt}}\\$
$\Rightarrow$ $A\omega \left( {\cos \omega t + kx} \right)$
The maximum value of the equation is \[{v_{\max }} = A\omega \].
The equation of maximum velocity is evaluated and now we can substitute the values to get maximum velocity.
${v_{\max }} = 0.5 \times 5\pi \\$
$\Rightarrow$ $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$
Thus, the maximum speed of the vibrating particles in the given medium is calculated to be $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$.
Thus, From the given options, only option B is correct.
Note: The step in which the equation for maximum velocity comes to be \[A\omega \] is a tricky method. We should remember that the maximum value of any sine or cosine function is 1, so in order to get maximum value of the equation \[A\omega \left( {\cos \omega t + kx} \right)\], the cosine function is taken as 1.
Complete step by step solution:
The distance between the crest and trough is $1.0{\rm{ cm}}$ which means that the amplitude is half of $1.0{\rm{ cm}}$. This can evaluate the value of amplitude as given below,
$A$ = $\dfrac{{1{\rm{ cm}}}}{2}\\$
$A$ = $0.5\;{\rm{cm}}$
The interval at which the next crest appears is nothing but the time period, therefore, the time period of the given wave is $0.4\;{\rm{s}}$.
We can calculate the value of angular frequency with the help of time period.
$\omega = \dfrac{{2\pi }}{T}$
We will now substitute the known values in the above equation of angular frequency.
$\omega = \dfrac{{2\pi }}{{0.4\;{\rm{s}}}}\\$
$\Rightarrow$ $5\pi \;{\rm{rad/s}}$
Here, the time interval is $T$.
We know that the general equation of a wave is given as $y = A\sin( \omega t + kx)$.
So, for maximum velocity, we will differentiate the above equation with respect to time.
$v$ = $\dfrac{{dy}}{{dt}}\\$
$\Rightarrow$ $\dfrac{{d\left( {A\sin \omega t + kx} \right)}}{{dt}}\\$
$\Rightarrow$ $A\omega \left( {\cos \omega t + kx} \right)$
The maximum value of the equation is \[{v_{\max }} = A\omega \].
The equation of maximum velocity is evaluated and now we can substitute the values to get maximum velocity.
${v_{\max }} = 0.5 \times 5\pi \\$
$\Rightarrow$ $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$
Thus, the maximum speed of the vibrating particles in the given medium is calculated to be $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$.
Thus, From the given options, only option B is correct.
Note: The step in which the equation for maximum velocity comes to be \[A\omega \] is a tricky method. We should remember that the maximum value of any sine or cosine function is 1, so in order to get maximum value of the equation \[A\omega \left( {\cos \omega t + kx} \right)\], the cosine function is taken as 1.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
If the unit of power is 1Kilo Watt the length is 100m class 11 physics JEE_Main

Which of the following statements is correct if the class 11 physics JEE_Main

The quantity of heat required to heat one mole of a class 11 physics JEE_Main

IIIT JEE Main Cutoff 2024

Photoelectric Effect and Stopping Potential with Work Function and Derivation for JEE

Newton’s Laws of Motion: Three Laws of Motion Explanation with Examples

Other Pages
JEE Advanced 2025 Revision Notes for Mechanics

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

A boy wants to throw a ball from a point A so as to class 11 physics JEE_Main

List of Fastest Century In IPL - Cricket League and FAQs

NEET 2025: All Major Changes in Application Process, Pattern and More
