
In a moving coil galvanometer, the deflection of the coil \[\theta \] is related to the electric current i by the relation
A. $i\propto \tan \theta $
B. $i\propto \theta $
C. $i\propto {{(\theta )}^{2}}$
D. $i\propto (\sqrt{\theta })$
Answer
163.5k+ views
Hint: Recall the formula for the angular deflection of a moving coil galvanometer to determine the correct option. Then observe the relationship between the specified quantities and the moving coil galvanometer's angular deflection. Check to see how the current is related to the deflection.
Formula used:
$\theta =(\dfrac{NAB}{k})i$, where $\theta $ is the deflection of the coil, N is the number of turns in the coil, B is the magnetic field, k is the torsional constant and A is the area of the coil.
Complete answer:
Let’s analyze the given options according to the formula
$\theta =(\dfrac{NAB}{k})i$
Where $\theta $ is the deflection of the coil, N is the number of turns in the coil, B is the magnetic field, k is the torsional constant and A is the area of the coil.
In option A, we can see that the current is directly proportional to $\tan \theta $and according to the formula there is no such relation between them, so it’s a wrong option.
In option C and D, the current is directly proportional to ${{(\theta )}^{2}}$and $(\sqrt{\theta })$respectively and according to the formula that we are using, there is no such relation between them.
As we can observe in the formula, if we suppose $(\dfrac{NAB}{k})$ as a constant then deflection of moving coil galvanometer is directly proportional to the current.
Hence, the correct option is B. $i\propto \theta $
Note: An electromagnetic tool used to measure tiny electric currents is a moving coil galvanometer. The galvanometer is made up of a coil with several turns that can freely revolve around a fixed axis. This current-carrying coil experiences a torque and rotates about the fixed axis when current runs through it and the gadget is put in a uniform magnetic field. The existence and deflection of current are indicated by this deflection.
Formula used:
$\theta =(\dfrac{NAB}{k})i$, where $\theta $ is the deflection of the coil, N is the number of turns in the coil, B is the magnetic field, k is the torsional constant and A is the area of the coil.
Complete answer:
Let’s analyze the given options according to the formula
$\theta =(\dfrac{NAB}{k})i$
Where $\theta $ is the deflection of the coil, N is the number of turns in the coil, B is the magnetic field, k is the torsional constant and A is the area of the coil.
In option A, we can see that the current is directly proportional to $\tan \theta $and according to the formula there is no such relation between them, so it’s a wrong option.
In option C and D, the current is directly proportional to ${{(\theta )}^{2}}$and $(\sqrt{\theta })$respectively and according to the formula that we are using, there is no such relation between them.
As we can observe in the formula, if we suppose $(\dfrac{NAB}{k})$ as a constant then deflection of moving coil galvanometer is directly proportional to the current.
Hence, the correct option is B. $i\propto \theta $
Note: An electromagnetic tool used to measure tiny electric currents is a moving coil galvanometer. The galvanometer is made up of a coil with several turns that can freely revolve around a fixed axis. This current-carrying coil experiences a torque and rotates about the fixed axis when current runs through it and the gadget is put in a uniform magnetic field. The existence and deflection of current are indicated by this deflection.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Wheatstone Bridge for JEE Main Physics 2025

Charging and Discharging of Capacitor
