
In a \[\Delta ABC\], find side b.
A. \[c\cos A + a\cos C\]
B. \[a\cos B + b\cos A\]
c. \[b\cos C + c\cos B\]
D. None of these
Answer
161.1k+ views
Hint: By using the cosine law we will check all options to find which one is the correct formula.
Formula used:
Cosine law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution:
First option is \[c\cos A + a\cos C\].
Putting \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\] and \[\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\]in \[c\cos A + a\cos C\]
\[c \cdot \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + a \cdot \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\]
Cancel out c and a from first and second term respectively:
\[ = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2b}} + \dfrac{{{a^2} + {b^2} - {c^2}}}{{2b}}\]
\[ = \dfrac{{{b^2} + {c^2} - {a^2} + {a^2} + {b^2} - {c^2}}}{{2b}}\]
\[ = \dfrac{{{b^2} + {b^2}}}{{2b}}\]
\[ = \dfrac{{2{b^2}}}{{2b}}\]
Cancel out 2b from denominator and numerator
\[ = b\]
Second option is \[a\cos B + b\cos A\].
Putting \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\] and \[\cos B = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\]in \[a\cos B + b\cos A\]
\[a \cdot \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}} + b \cdot \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
Cancel out a and b from first and second term respectively:
\[ = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2c}} + \dfrac{{{b^2} + {c^2} - {a^2}}}{{2c}}\]
\[ = \dfrac{{{a^2} + {c^2} - {b^2} + {b^2} + {c^2} - {a^2}}}{{2c}}\]
\[ = \dfrac{{{c^2} + {c^2}}}{{2c}}\]
\[ = \dfrac{{2{c^2}}}{{2c}}\]
Cancel out 2c from denominator and numerator
\[ = c\]
Third option is \[b\cos C + c\cos B\].
Putting \[\cos B = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\] and \[\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\]in \[b\cos C + c\cos B\]
\[b \cdot \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} + c \cdot \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\]
Cancel out b and c from first and second term respectively:
\[ = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2a}} + \dfrac{{{a^2} + {c^2} - {b^2}}}{{2a}}\]
\[ = \dfrac{{{a^2} + {b^2} - {c^2} + {a^2} + {c^2} - {b^2}}}{{2a}}\]
\[ = \dfrac{{{a^2} + {a^2}}}{{2c}}\]
\[ = \dfrac{{2{a^2}}}{{2a}}\]
Cancel out 2a from denominator and numerator
\[ = a\]
Hence option A is the correct option.
Note:some students try to solve the given question by solving the cosine formula \[{b^2} = {a^2} + {c^2} - 2ac\cos B\]. But it is not correct way to solve the question. Using the options, we will solve the question.
Formula used:
Cosine law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution:
First option is \[c\cos A + a\cos C\].
Putting \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\] and \[\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\]in \[c\cos A + a\cos C\]
\[c \cdot \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + a \cdot \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\]
Cancel out c and a from first and second term respectively:
\[ = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2b}} + \dfrac{{{a^2} + {b^2} - {c^2}}}{{2b}}\]
\[ = \dfrac{{{b^2} + {c^2} - {a^2} + {a^2} + {b^2} - {c^2}}}{{2b}}\]
\[ = \dfrac{{{b^2} + {b^2}}}{{2b}}\]
\[ = \dfrac{{2{b^2}}}{{2b}}\]
Cancel out 2b from denominator and numerator
\[ = b\]
Second option is \[a\cos B + b\cos A\].
Putting \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\] and \[\cos B = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\]in \[a\cos B + b\cos A\]
\[a \cdot \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}} + b \cdot \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
Cancel out a and b from first and second term respectively:
\[ = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2c}} + \dfrac{{{b^2} + {c^2} - {a^2}}}{{2c}}\]
\[ = \dfrac{{{a^2} + {c^2} - {b^2} + {b^2} + {c^2} - {a^2}}}{{2c}}\]
\[ = \dfrac{{{c^2} + {c^2}}}{{2c}}\]
\[ = \dfrac{{2{c^2}}}{{2c}}\]
Cancel out 2c from denominator and numerator
\[ = c\]
Third option is \[b\cos C + c\cos B\].
Putting \[\cos B = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\] and \[\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\]in \[b\cos C + c\cos B\]
\[b \cdot \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} + c \cdot \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\]
Cancel out b and c from first and second term respectively:
\[ = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2a}} + \dfrac{{{a^2} + {c^2} - {b^2}}}{{2a}}\]
\[ = \dfrac{{{a^2} + {b^2} - {c^2} + {a^2} + {c^2} - {b^2}}}{{2a}}\]
\[ = \dfrac{{{a^2} + {a^2}}}{{2c}}\]
\[ = \dfrac{{2{a^2}}}{{2a}}\]
Cancel out 2a from denominator and numerator
\[ = a\]
Hence option A is the correct option.
Note:some students try to solve the given question by solving the cosine formula \[{b^2} = {a^2} + {c^2} - 2ac\cos B\]. But it is not correct way to solve the question. Using the options, we will solve the question.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
