
(i)${{K}_{4}}[Fe{{(CN)}_{6}}]$(ii) ${{K}_{3}}[Cr{{(CN)}_{6}}]$(iii)${{K}_{3}}[Fe{{(CN)}_{6}}]$(iv)${{K}_{2}}[Ni{{(CN)}_{4}}]$choose the complex which is paramagnetic [Kerala CET $2005$]
A. (i),(ii) and (iii)
B. (i), (iii) and (iv)
C. (ii) and (iii)
D. (i), (ii) and (iv)
E. (ii) and (iv)
Answer
232.8k+ views
Hint: The magnetic properties of a complex can be determined by the size of the atoms and their electronic configuration. The number of unpaired electrons in a particular complex indicates the paramagnetism of any complex. Here we have to find an unpaired electron from the electronic configuration of the central metal in the given complex.
Complete answer:Transition metals ($Sc,Ti,V,Cr,Mn,Ni$etc.) have a special ability to form magnets. Metal complexes that have paired electrons in their valence shell are called diamagnetic complexes and metal complexes that have unpaired electrons are called paramagnetic complexes. The last electron in transition metal complexes resides on the d-orbital and when there are unpaired electrons residing on the d-orbital is called the paramagnetic complex. With increasing unpaired electrons the paramagnetic effect increases.
Here we have four transition metal complexes. Cyanide $(C{{N}^{-}})$is a strong ligand and it causes the pairing of unpaired $3d-$electrons in an excited state. Let’s check their unpaired electrons one by one.
(i) ${{K}_{4}}[Fe{{(CN)}_{6}}]$
The atomic number of iron,$Fe=26$ and the electronic configuration of $Fe=[Ar]3{{d}^{6}}4{{s}^{2}}$
Here $F{{e}^{2+}}=[Ar]3{{d}^{6}}4{{s}^{0}}$
$Fe=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$ in ground state
$Fe=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & {} & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$ in excited state
$F{{e}^{2+}}=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & {} & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
{} \\
\end{matrix}}}\,$
$F{{e}^{2+}}$has zero unpaired electron, hence diamagnetic.
(ii)${{K}_{3}}[Cr{{(CN)}_{6}}]$
The atomic number of chromium, $Cr=24$and electronic configuration of $Cr=[Ar]3{{d}^{4}}4{{s}^{2}}$
Here $C{{r}^{3+}}=[Ar]3{{d}^{3}}4{{s}^{0}}$
$Cr=\underset{3d}{\mathop{\begin{matrix}
\uparrow & \uparrow & \uparrow & \uparrow & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$ in ground state
$Cr=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow & \uparrow & {} & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$in excited state
$C{{r}^{3+}}=\underset{3d}{\mathop{\begin{matrix}
\uparrow & \uparrow & \uparrow & {} & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
{} \\
\end{matrix}}}\,$
$C{{r}^{3+}}$has three unpaired electrons in $3d-$orbital and hence paramagnetic.
(iii)${{K}_{3}}[Fe{{(CN)}_{6}}]$
The atomic number of iron,$Fe=26$ and the electronic configuration of $Fe=[Ar]3{{d}^{6}}4{{s}^{2}}$
Here $F{{e}^{3+}}=[Ar]3{{d}^{5}}4{{s}^{0}}$
$Fe=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$in ground state
$Fe=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & {} & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$in excited state
$F{{e}^{3+}}=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow \downarrow & \uparrow & {} & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
{} \\
\end{matrix}}}\,$
$F{{e}^{3+}}$has one unpaired electron in $3d-$orbital and hence paramagnetic.
(iv)${{K}_{2}}[Ni{{(CN)}_{4}}]$
Here $N{{i}^{2+}}=[Ar]3{{d}^{8}}4{{s}^{0}}$
$Ni=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & \uparrow & \uparrow \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$in ground state
$Ni=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$in excited state
$N{{i}^{2+}}=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
{} \\
\end{matrix}}}\,$
$N{{i}^{2+}}$has no unpaired electron, hence it is diamagnetic.
Hence ${{K}_{3}}[Cr{{(CN)}_{6}}]$and ${{K}_{3}}[Fe{{(CN)}_{6}}]$are paramagnetic.
Hence, option (C) is correct.
Note: A permanent magnetic moment exists in paramagnetic substances and these metal complexes are strongly attracted by the magnetic field because of unpaired electrons present in them. Therefore to calculate the magnetic moment one must remember the atomic number of transition metals.
Complete answer:Transition metals ($Sc,Ti,V,Cr,Mn,Ni$etc.) have a special ability to form magnets. Metal complexes that have paired electrons in their valence shell are called diamagnetic complexes and metal complexes that have unpaired electrons are called paramagnetic complexes. The last electron in transition metal complexes resides on the d-orbital and when there are unpaired electrons residing on the d-orbital is called the paramagnetic complex. With increasing unpaired electrons the paramagnetic effect increases.
Here we have four transition metal complexes. Cyanide $(C{{N}^{-}})$is a strong ligand and it causes the pairing of unpaired $3d-$electrons in an excited state. Let’s check their unpaired electrons one by one.
(i) ${{K}_{4}}[Fe{{(CN)}_{6}}]$
The atomic number of iron,$Fe=26$ and the electronic configuration of $Fe=[Ar]3{{d}^{6}}4{{s}^{2}}$
Here $F{{e}^{2+}}=[Ar]3{{d}^{6}}4{{s}^{0}}$
$Fe=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$ in ground state
$Fe=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & {} & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$ in excited state
$F{{e}^{2+}}=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & {} & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
{} \\
\end{matrix}}}\,$
$F{{e}^{2+}}$has zero unpaired electron, hence diamagnetic.
(ii)${{K}_{3}}[Cr{{(CN)}_{6}}]$
The atomic number of chromium, $Cr=24$and electronic configuration of $Cr=[Ar]3{{d}^{4}}4{{s}^{2}}$
Here $C{{r}^{3+}}=[Ar]3{{d}^{3}}4{{s}^{0}}$
$Cr=\underset{3d}{\mathop{\begin{matrix}
\uparrow & \uparrow & \uparrow & \uparrow & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$ in ground state
$Cr=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow & \uparrow & {} & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$in excited state
$C{{r}^{3+}}=\underset{3d}{\mathop{\begin{matrix}
\uparrow & \uparrow & \uparrow & {} & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
{} \\
\end{matrix}}}\,$
$C{{r}^{3+}}$has three unpaired electrons in $3d-$orbital and hence paramagnetic.
(iii)${{K}_{3}}[Fe{{(CN)}_{6}}]$
The atomic number of iron,$Fe=26$ and the electronic configuration of $Fe=[Ar]3{{d}^{6}}4{{s}^{2}}$
Here $F{{e}^{3+}}=[Ar]3{{d}^{5}}4{{s}^{0}}$
$Fe=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$in ground state
$Fe=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & {} & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$in excited state
$F{{e}^{3+}}=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow \downarrow & \uparrow & {} & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
{} \\
\end{matrix}}}\,$
$F{{e}^{3+}}$has one unpaired electron in $3d-$orbital and hence paramagnetic.
(iv)${{K}_{2}}[Ni{{(CN)}_{4}}]$
Here $N{{i}^{2+}}=[Ar]3{{d}^{8}}4{{s}^{0}}$
$Ni=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & \uparrow & \uparrow \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$in ground state
$Ni=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
\uparrow \downarrow \\
\end{matrix}}}\,$in excited state
$N{{i}^{2+}}=\underset{3d}{\mathop{\begin{matrix}
\uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & {} \\
\end{matrix}}}\,\underset{4s}{\mathop{\begin{matrix}
{} \\
\end{matrix}}}\,$
$N{{i}^{2+}}$has no unpaired electron, hence it is diamagnetic.
Hence ${{K}_{3}}[Cr{{(CN)}_{6}}]$and ${{K}_{3}}[Fe{{(CN)}_{6}}]$are paramagnetic.
Hence, option (C) is correct.
Note: A permanent magnetic moment exists in paramagnetic substances and these metal complexes are strongly attracted by the magnetic field because of unpaired electrons present in them. Therefore to calculate the magnetic moment one must remember the atomic number of transition metals.
Recently Updated Pages
Chlorobenzene is extremely less reactive towards a class 12 chemistry JEE_Main

How many dichlorocyclohexane would be obtained on chlorination class 12 chemistry JEE_Main

The vapour pressure of pure A is 10 torr and at the class 12 chemistry JEE_Main

An alcohol A gives Lucas test within 5 minutes 74 g class 12 chemistry JEE_Main

Which one of the following statements is not true 1 class 12 chemistry JEE_Main

Ethene when treated with Br2 in the presence of CCl4 class 12 chemistry JEE_Main

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions (2025-26)

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 4 The d and f Block Elements (2025-26)

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules (2025-26)

