
If$F(x)=\dfrac{1}{{{x}^{2}}}\int\limits_{4}^{x}{\left( 4{{t}^{2}}-2F'(t) \right)}dt$, then F’(4) equals
(a) $\dfrac{32}{9}$
(b) $\dfrac{64}{3}$
(c) $\dfrac{64}{9}$
(D) \[\dfrac{32}{3}\]
Answer
241.2k+ views
Hint: Integrate the problem directly and take F(t) as the integration of F’(t). After finding the integration, differentiate it to find the solution.
We will write the given equation and will start integrating directly,
$F(x)=\dfrac{1}{{{x}^{2}}}\int\limits_{4}^{x}{\left( 4{{t}^{2}}-2F'(t) \right)}dt$
We can integrate both the terms separately,
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$………………………………………… (1)
Now, we will integrate the first term as shown below,
\[\int\limits_{4}^{x}{4{{t}^{2}}}dt=4\int\limits_{4}^{x}{{{t}^{2}}}dt\]
We can solve it further by using the formula given below,
Formula:
\[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c\]
By using above formula we can write,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{t}^{2+1}}}{2+1} \right]_{4}^{x}\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{t3}{3} \right]_{4}^{x}\]
We will substitute the limits to get the answer as shown below,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{x}^{3}}}{3}-\dfrac{{{4}^{3}}}{3} \right]\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=\dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]\]…………………………………………. (2)
Also, to find\[\int\limits_{4}^{x}{F'(t)dt}\] we should know the relation between integration and derivative,
If, \[\dfrac{d}{dx}f(x)=f'(x)\] then \[\int{f'(x)}=f(x)\]
Therefore we can write \[\int\limits_{4}^{x}{F'(t)dt}\] by using above formula as,
\[\int\limits_{4}^{x}{F'(t)dt}=\left[ F(t) \right]_{4}^{x}\]
We will substitute the limits to get the answer, as shown below,
\[\therefore \int\limits_{4}^{x}{F'(t)dt}=\left[ F(x)-F(4) \right]\]…………………………………….. (3)
Now put the values of equation (2) and (3) in equation (1)
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]-2\left( F(x)-F(4) \right) \right]\]
Multiply by $\dfrac{4}{3}$ in to the bracket we will get,
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4\times {{x}^{3}}}{3}-\dfrac{4\times {{4}^{3}}}{3}-2F(x)+2F(4) \right]\]
Multiplying by \[\dfrac{1}{{{x}^{2}}}\] in the bracket we will get,
\[\therefore F(x)=\left[ \dfrac{4\times {{x}^{3}}}{3\times {{x}^{2}}}-\dfrac{4\times {{4}^{3}}}{3\times {{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
\[\therefore F(x)=\left[ \dfrac{4x}{3}-\dfrac{256}{3{{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
To get the final answer we have to differentiate the above equation,
Therefore differentiating above equation w.r.t. x is given by,
\[\therefore F'(x)=\dfrac{d}{dx}\left( \dfrac{4x}{3} \right)-\dfrac{d}{dx}\left( \dfrac{256}{3{{x}^{2}}} \right)-\dfrac{d}{dx}\left[ \dfrac{2F(x)}{{{x}^{2}}} \right]+\dfrac{d}{dx}\left[ \dfrac{2F(4)}{{{x}^{2}}} \right]\]
We will take constants outside the derivative and rewrite the equation,
\[\therefore F'(x)=\dfrac{4}{3}\dfrac{d}{dx}\left( x \right)-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( x \right)=1\] we will get,
\[\therefore F'(x)=\dfrac{4}{3}\times 1-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{n}}} \right)=\dfrac{-n}{{{x}^{n+1}}}\] we will get ………………………………… (4)
\[\therefore F'(x)=\dfrac{4}{3}-\dfrac{256}{3}\times \dfrac{-2}{{{x}^{2+1}}}-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using formula of division rule i. e. \[\dfrac{d}{dx}\left[ \dfrac{u}{v} \right]=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-2\left[ \dfrac{{{x}^{2}}\dfrac{d}{dx}F(x)-F(x)\dfrac{d}{dx}({{x}^{2}})}{{{({{x}^{2}})}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
We can get derivative of remaining terms by using formulae stated earlier in this problem,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)-2F(x)\times (2x)}{{{x}^{4}}}+2F(4)\left[ \dfrac{-2}{{{x}^{3}}} \right]\]
Further algebraic simplification will give,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)}{{{x}^{4}}}+\dfrac{2F(x)\times (2x)}{{{x}^{4}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}+\dfrac{4F(x)}{{{x}^{3}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}\]
Now as we have to find F’(4),
Put, x=4 in above equation,
\[\therefore F'(4)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{4}^{3}}}-\dfrac{2F'(4)}{{{4}^{2}}}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{{{4}^{2}}}=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{64}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{16}=\dfrac{4}{3}+\dfrac{4}{3}\times 2\]
\[\therefore F'(4)\left[ 1+\dfrac{2}{16} \right]=\dfrac{4}{3}+\dfrac{8}{3}\]
\[\therefore F'(4)\left[ \dfrac{16+2}{16} \right]=\dfrac{12}{3}\]
\[\therefore F'(4)\left[ \dfrac{18}{16} \right]=4\]
\[\therefore F'(4)=4\times \dfrac{16}{18}\]
\[\therefore F'(4)=2\times \dfrac{16}{9}\]
\[\therefore F'(4)=\dfrac{32}{9}\]
Therefore option (a) is the correct answer.
Note: Do not use Leibniz Rule to get the derivative of the integral as it makes the problem lengthy and consumes your time.
We will write the given equation and will start integrating directly,
$F(x)=\dfrac{1}{{{x}^{2}}}\int\limits_{4}^{x}{\left( 4{{t}^{2}}-2F'(t) \right)}dt$
We can integrate both the terms separately,
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$………………………………………… (1)
Now, we will integrate the first term as shown below,
\[\int\limits_{4}^{x}{4{{t}^{2}}}dt=4\int\limits_{4}^{x}{{{t}^{2}}}dt\]
We can solve it further by using the formula given below,
Formula:
\[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c\]
By using above formula we can write,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{t}^{2+1}}}{2+1} \right]_{4}^{x}\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{t3}{3} \right]_{4}^{x}\]
We will substitute the limits to get the answer as shown below,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{x}^{3}}}{3}-\dfrac{{{4}^{3}}}{3} \right]\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=\dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]\]…………………………………………. (2)
Also, to find\[\int\limits_{4}^{x}{F'(t)dt}\] we should know the relation between integration and derivative,
If, \[\dfrac{d}{dx}f(x)=f'(x)\] then \[\int{f'(x)}=f(x)\]
Therefore we can write \[\int\limits_{4}^{x}{F'(t)dt}\] by using above formula as,
\[\int\limits_{4}^{x}{F'(t)dt}=\left[ F(t) \right]_{4}^{x}\]
We will substitute the limits to get the answer, as shown below,
\[\therefore \int\limits_{4}^{x}{F'(t)dt}=\left[ F(x)-F(4) \right]\]…………………………………….. (3)
Now put the values of equation (2) and (3) in equation (1)
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]-2\left( F(x)-F(4) \right) \right]\]
Multiply by $\dfrac{4}{3}$ in to the bracket we will get,
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4\times {{x}^{3}}}{3}-\dfrac{4\times {{4}^{3}}}{3}-2F(x)+2F(4) \right]\]
Multiplying by \[\dfrac{1}{{{x}^{2}}}\] in the bracket we will get,
\[\therefore F(x)=\left[ \dfrac{4\times {{x}^{3}}}{3\times {{x}^{2}}}-\dfrac{4\times {{4}^{3}}}{3\times {{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
\[\therefore F(x)=\left[ \dfrac{4x}{3}-\dfrac{256}{3{{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
To get the final answer we have to differentiate the above equation,
Therefore differentiating above equation w.r.t. x is given by,
\[\therefore F'(x)=\dfrac{d}{dx}\left( \dfrac{4x}{3} \right)-\dfrac{d}{dx}\left( \dfrac{256}{3{{x}^{2}}} \right)-\dfrac{d}{dx}\left[ \dfrac{2F(x)}{{{x}^{2}}} \right]+\dfrac{d}{dx}\left[ \dfrac{2F(4)}{{{x}^{2}}} \right]\]
We will take constants outside the derivative and rewrite the equation,
\[\therefore F'(x)=\dfrac{4}{3}\dfrac{d}{dx}\left( x \right)-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( x \right)=1\] we will get,
\[\therefore F'(x)=\dfrac{4}{3}\times 1-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{n}}} \right)=\dfrac{-n}{{{x}^{n+1}}}\] we will get ………………………………… (4)
\[\therefore F'(x)=\dfrac{4}{3}-\dfrac{256}{3}\times \dfrac{-2}{{{x}^{2+1}}}-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using formula of division rule i. e. \[\dfrac{d}{dx}\left[ \dfrac{u}{v} \right]=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-2\left[ \dfrac{{{x}^{2}}\dfrac{d}{dx}F(x)-F(x)\dfrac{d}{dx}({{x}^{2}})}{{{({{x}^{2}})}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
We can get derivative of remaining terms by using formulae stated earlier in this problem,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)-2F(x)\times (2x)}{{{x}^{4}}}+2F(4)\left[ \dfrac{-2}{{{x}^{3}}} \right]\]
Further algebraic simplification will give,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)}{{{x}^{4}}}+\dfrac{2F(x)\times (2x)}{{{x}^{4}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}+\dfrac{4F(x)}{{{x}^{3}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}\]
Now as we have to find F’(4),
Put, x=4 in above equation,
\[\therefore F'(4)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{4}^{3}}}-\dfrac{2F'(4)}{{{4}^{2}}}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{{{4}^{2}}}=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{64}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{16}=\dfrac{4}{3}+\dfrac{4}{3}\times 2\]
\[\therefore F'(4)\left[ 1+\dfrac{2}{16} \right]=\dfrac{4}{3}+\dfrac{8}{3}\]
\[\therefore F'(4)\left[ \dfrac{16+2}{16} \right]=\dfrac{12}{3}\]
\[\therefore F'(4)\left[ \dfrac{18}{16} \right]=4\]
\[\therefore F'(4)=4\times \dfrac{16}{18}\]
\[\therefore F'(4)=2\times \dfrac{16}{9}\]
\[\therefore F'(4)=\dfrac{32}{9}\]
Therefore option (a) is the correct answer.
Note: Do not use Leibniz Rule to get the derivative of the integral as it makes the problem lengthy and consumes your time.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

