
If$F(x)=\dfrac{1}{{{x}^{2}}}\int\limits_{4}^{x}{\left( 4{{t}^{2}}-2F'(t) \right)}dt$, then F’(4) equals
(a) $\dfrac{32}{9}$
(b) $\dfrac{64}{3}$
(c) $\dfrac{64}{9}$
(D) \[\dfrac{32}{3}\]
Answer
222.9k+ views
Hint: Integrate the problem directly and take F(t) as the integration of F’(t). After finding the integration, differentiate it to find the solution.
We will write the given equation and will start integrating directly,
$F(x)=\dfrac{1}{{{x}^{2}}}\int\limits_{4}^{x}{\left( 4{{t}^{2}}-2F'(t) \right)}dt$
We can integrate both the terms separately,
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$………………………………………… (1)
Now, we will integrate the first term as shown below,
\[\int\limits_{4}^{x}{4{{t}^{2}}}dt=4\int\limits_{4}^{x}{{{t}^{2}}}dt\]
We can solve it further by using the formula given below,
Formula:
\[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c\]
By using above formula we can write,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{t}^{2+1}}}{2+1} \right]_{4}^{x}\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{t3}{3} \right]_{4}^{x}\]
We will substitute the limits to get the answer as shown below,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{x}^{3}}}{3}-\dfrac{{{4}^{3}}}{3} \right]\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=\dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]\]…………………………………………. (2)
Also, to find\[\int\limits_{4}^{x}{F'(t)dt}\] we should know the relation between integration and derivative,
If, \[\dfrac{d}{dx}f(x)=f'(x)\] then \[\int{f'(x)}=f(x)\]
Therefore we can write \[\int\limits_{4}^{x}{F'(t)dt}\] by using above formula as,
\[\int\limits_{4}^{x}{F'(t)dt}=\left[ F(t) \right]_{4}^{x}\]
We will substitute the limits to get the answer, as shown below,
\[\therefore \int\limits_{4}^{x}{F'(t)dt}=\left[ F(x)-F(4) \right]\]…………………………………….. (3)
Now put the values of equation (2) and (3) in equation (1)
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]-2\left( F(x)-F(4) \right) \right]\]
Multiply by $\dfrac{4}{3}$ in to the bracket we will get,
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4\times {{x}^{3}}}{3}-\dfrac{4\times {{4}^{3}}}{3}-2F(x)+2F(4) \right]\]
Multiplying by \[\dfrac{1}{{{x}^{2}}}\] in the bracket we will get,
\[\therefore F(x)=\left[ \dfrac{4\times {{x}^{3}}}{3\times {{x}^{2}}}-\dfrac{4\times {{4}^{3}}}{3\times {{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
\[\therefore F(x)=\left[ \dfrac{4x}{3}-\dfrac{256}{3{{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
To get the final answer we have to differentiate the above equation,
Therefore differentiating above equation w.r.t. x is given by,
\[\therefore F'(x)=\dfrac{d}{dx}\left( \dfrac{4x}{3} \right)-\dfrac{d}{dx}\left( \dfrac{256}{3{{x}^{2}}} \right)-\dfrac{d}{dx}\left[ \dfrac{2F(x)}{{{x}^{2}}} \right]+\dfrac{d}{dx}\left[ \dfrac{2F(4)}{{{x}^{2}}} \right]\]
We will take constants outside the derivative and rewrite the equation,
\[\therefore F'(x)=\dfrac{4}{3}\dfrac{d}{dx}\left( x \right)-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( x \right)=1\] we will get,
\[\therefore F'(x)=\dfrac{4}{3}\times 1-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{n}}} \right)=\dfrac{-n}{{{x}^{n+1}}}\] we will get ………………………………… (4)
\[\therefore F'(x)=\dfrac{4}{3}-\dfrac{256}{3}\times \dfrac{-2}{{{x}^{2+1}}}-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using formula of division rule i. e. \[\dfrac{d}{dx}\left[ \dfrac{u}{v} \right]=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-2\left[ \dfrac{{{x}^{2}}\dfrac{d}{dx}F(x)-F(x)\dfrac{d}{dx}({{x}^{2}})}{{{({{x}^{2}})}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
We can get derivative of remaining terms by using formulae stated earlier in this problem,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)-2F(x)\times (2x)}{{{x}^{4}}}+2F(4)\left[ \dfrac{-2}{{{x}^{3}}} \right]\]
Further algebraic simplification will give,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)}{{{x}^{4}}}+\dfrac{2F(x)\times (2x)}{{{x}^{4}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}+\dfrac{4F(x)}{{{x}^{3}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}\]
Now as we have to find F’(4),
Put, x=4 in above equation,
\[\therefore F'(4)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{4}^{3}}}-\dfrac{2F'(4)}{{{4}^{2}}}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{{{4}^{2}}}=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{64}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{16}=\dfrac{4}{3}+\dfrac{4}{3}\times 2\]
\[\therefore F'(4)\left[ 1+\dfrac{2}{16} \right]=\dfrac{4}{3}+\dfrac{8}{3}\]
\[\therefore F'(4)\left[ \dfrac{16+2}{16} \right]=\dfrac{12}{3}\]
\[\therefore F'(4)\left[ \dfrac{18}{16} \right]=4\]
\[\therefore F'(4)=4\times \dfrac{16}{18}\]
\[\therefore F'(4)=2\times \dfrac{16}{9}\]
\[\therefore F'(4)=\dfrac{32}{9}\]
Therefore option (a) is the correct answer.
Note: Do not use Leibniz Rule to get the derivative of the integral as it makes the problem lengthy and consumes your time.
We will write the given equation and will start integrating directly,
$F(x)=\dfrac{1}{{{x}^{2}}}\int\limits_{4}^{x}{\left( 4{{t}^{2}}-2F'(t) \right)}dt$
We can integrate both the terms separately,
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$………………………………………… (1)
Now, we will integrate the first term as shown below,
\[\int\limits_{4}^{x}{4{{t}^{2}}}dt=4\int\limits_{4}^{x}{{{t}^{2}}}dt\]
We can solve it further by using the formula given below,
Formula:
\[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c\]
By using above formula we can write,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{t}^{2+1}}}{2+1} \right]_{4}^{x}\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{t3}{3} \right]_{4}^{x}\]
We will substitute the limits to get the answer as shown below,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{x}^{3}}}{3}-\dfrac{{{4}^{3}}}{3} \right]\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=\dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]\]…………………………………………. (2)
Also, to find\[\int\limits_{4}^{x}{F'(t)dt}\] we should know the relation between integration and derivative,
If, \[\dfrac{d}{dx}f(x)=f'(x)\] then \[\int{f'(x)}=f(x)\]
Therefore we can write \[\int\limits_{4}^{x}{F'(t)dt}\] by using above formula as,
\[\int\limits_{4}^{x}{F'(t)dt}=\left[ F(t) \right]_{4}^{x}\]
We will substitute the limits to get the answer, as shown below,
\[\therefore \int\limits_{4}^{x}{F'(t)dt}=\left[ F(x)-F(4) \right]\]…………………………………….. (3)
Now put the values of equation (2) and (3) in equation (1)
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]-2\left( F(x)-F(4) \right) \right]\]
Multiply by $\dfrac{4}{3}$ in to the bracket we will get,
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4\times {{x}^{3}}}{3}-\dfrac{4\times {{4}^{3}}}{3}-2F(x)+2F(4) \right]\]
Multiplying by \[\dfrac{1}{{{x}^{2}}}\] in the bracket we will get,
\[\therefore F(x)=\left[ \dfrac{4\times {{x}^{3}}}{3\times {{x}^{2}}}-\dfrac{4\times {{4}^{3}}}{3\times {{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
\[\therefore F(x)=\left[ \dfrac{4x}{3}-\dfrac{256}{3{{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
To get the final answer we have to differentiate the above equation,
Therefore differentiating above equation w.r.t. x is given by,
\[\therefore F'(x)=\dfrac{d}{dx}\left( \dfrac{4x}{3} \right)-\dfrac{d}{dx}\left( \dfrac{256}{3{{x}^{2}}} \right)-\dfrac{d}{dx}\left[ \dfrac{2F(x)}{{{x}^{2}}} \right]+\dfrac{d}{dx}\left[ \dfrac{2F(4)}{{{x}^{2}}} \right]\]
We will take constants outside the derivative and rewrite the equation,
\[\therefore F'(x)=\dfrac{4}{3}\dfrac{d}{dx}\left( x \right)-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( x \right)=1\] we will get,
\[\therefore F'(x)=\dfrac{4}{3}\times 1-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{n}}} \right)=\dfrac{-n}{{{x}^{n+1}}}\] we will get ………………………………… (4)
\[\therefore F'(x)=\dfrac{4}{3}-\dfrac{256}{3}\times \dfrac{-2}{{{x}^{2+1}}}-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using formula of division rule i. e. \[\dfrac{d}{dx}\left[ \dfrac{u}{v} \right]=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-2\left[ \dfrac{{{x}^{2}}\dfrac{d}{dx}F(x)-F(x)\dfrac{d}{dx}({{x}^{2}})}{{{({{x}^{2}})}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
We can get derivative of remaining terms by using formulae stated earlier in this problem,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)-2F(x)\times (2x)}{{{x}^{4}}}+2F(4)\left[ \dfrac{-2}{{{x}^{3}}} \right]\]
Further algebraic simplification will give,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)}{{{x}^{4}}}+\dfrac{2F(x)\times (2x)}{{{x}^{4}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}+\dfrac{4F(x)}{{{x}^{3}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}\]
Now as we have to find F’(4),
Put, x=4 in above equation,
\[\therefore F'(4)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{4}^{3}}}-\dfrac{2F'(4)}{{{4}^{2}}}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{{{4}^{2}}}=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{64}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{16}=\dfrac{4}{3}+\dfrac{4}{3}\times 2\]
\[\therefore F'(4)\left[ 1+\dfrac{2}{16} \right]=\dfrac{4}{3}+\dfrac{8}{3}\]
\[\therefore F'(4)\left[ \dfrac{16+2}{16} \right]=\dfrac{12}{3}\]
\[\therefore F'(4)\left[ \dfrac{18}{16} \right]=4\]
\[\therefore F'(4)=4\times \dfrac{16}{18}\]
\[\therefore F'(4)=2\times \dfrac{16}{9}\]
\[\therefore F'(4)=\dfrac{32}{9}\]
Therefore option (a) is the correct answer.
Note: Do not use Leibniz Rule to get the derivative of the integral as it makes the problem lengthy and consumes your time.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

Atomic Structure: Definition, Models, and Examples

Degree of Dissociation: Meaning, Formula, Calculation & Uses

How to Convert a Galvanometer into an Ammeter or Voltmeter

Average and RMS Value in Physics: Formula, Comparison & Application

