
If ${{z}_{1}}$ and ${{z}_{2}}$ are two complex numbers, then $\left| {{z}_{1}}+{{z}_{2}} \right|$ is
A. $\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|$
B. $\le \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|$
C. $<\left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|$
D. $>\left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|$
Answer
163.8k+ views
Hint: In this question, we are to prove the given property of the complex numbers. For this, the basic operations are applied.
Formula used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
Some of the basic properties of complex numbers are:
$\operatorname{Re}(z)\le \left| z \right|,\operatorname{Im}(z)\le \left| z \right|$
$\begin{align}
& \overline{{{z}_{1}}+{{z}_{2}}}=\overline{{{z}_{1}}}+\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}-{{z}_{2}}}=\overline{{{z}_{1}}}-\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}{{z}_{2}}}=\overline{{{z}_{1}}}\overline{{{z}_{2}}} \\
& \left( \overline{{}^{{{z}_{1}}}/{}_{{{z}_{2}}}} \right)={}^{\overline{{{z}_{1}}}}/{}_{\overline{{{z}_{2}}}};{{z}_{2}}\ne 0 \\
\end{align}$
Complete step by step solution: Given that, ${{z}_{1}}$ and ${{z}_{2}}$ are two complex numbers.
So, we have
$\operatorname{Re}(z)\le \left| z \right|,\operatorname{Im}(z)\le \left| z \right|$
If $z=x+iy\in C$ then $\overline{z}=x-iy$
On multiplying $z$ and $\overline{z}$, we get
$\begin{align}
& z\overline{z}=(x+iy)(x-iy) \\
& \text{ }={{x}^{2}}+{{y}^{2}} \\
& \text{ }={{\left| z \right|}^{2}} \\
\end{align}$
Applying this for the given expression $\left| {{z}_{1}}+{{z}_{2}} \right|$
$\begin{align}
& {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}=({{z}_{1}}+{{z}_{2}})(\overline{{{z}_{1}}+{{z}_{2}}}) \\
& \text{ }=({{z}_{1}}+{{z}_{2}})(\overline{{{z}_{1}}}+\overline{{{z}_{2}}}) \\
& \text{ }={{z}_{1}}\overline{{{z}_{1}}}+{{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}}+{{z}_{2}}\overline{{{z}_{2}}} \\
& \text{ }={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})\text{ }...(1) \\
\end{align}$
For finding the term $({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})$, consider ${{z}_{1}}=a+ib;{{z}_{2}}=c+id$
$\begin{align}
& ({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})=(a+ib)(c-id)+(a-ib)(c+id) \\
& \text{ }=ac-iad+ibc+bd+ac+iad-ibc+bd \\
& \text{ }=2(ac+bd) \\
& \text{ }=2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}}) \\
\end{align}$
Then, on substituting in (1), we get
${{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\text{ }...(2)$
But we have $\operatorname{Re}(z)\le \left| z \right|$
So,
\[\begin{align}
& \operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\le \left| {{z}_{1}}\overline{{{z}_{2}}} \right|=\left| {{z}_{1}} \right|\left| \overline{{{z}_{2}}} \right|=\left| {{z}_{1}} \right|\left| {{z}_{2}} \right| \\
& \Rightarrow \operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\le \left| {{z}_{1}} \right|\left| {{z}_{2}} \right|\text{ }...(3) \\
\end{align}\]
Thus, from (2) and (3),
\[\begin{align}
& {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}}) \\
& \Rightarrow {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\left| {{z}_{1}} \right|\left| {{z}_{2}} \right| \\
& \Rightarrow {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le {{\left( \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right| \right)}^{2}} \\
& \therefore {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right| \\
\end{align}\]
Thus, Option (A) is correct.
Note: Here we need to apply the properties of complex numbers, to find the given expression. By applying appropriate formulae, the required value is obtained.
Formula used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
Some of the basic properties of complex numbers are:
$\operatorname{Re}(z)\le \left| z \right|,\operatorname{Im}(z)\le \left| z \right|$
$\begin{align}
& \overline{{{z}_{1}}+{{z}_{2}}}=\overline{{{z}_{1}}}+\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}-{{z}_{2}}}=\overline{{{z}_{1}}}-\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}{{z}_{2}}}=\overline{{{z}_{1}}}\overline{{{z}_{2}}} \\
& \left( \overline{{}^{{{z}_{1}}}/{}_{{{z}_{2}}}} \right)={}^{\overline{{{z}_{1}}}}/{}_{\overline{{{z}_{2}}}};{{z}_{2}}\ne 0 \\
\end{align}$
Complete step by step solution: Given that, ${{z}_{1}}$ and ${{z}_{2}}$ are two complex numbers.
So, we have
$\operatorname{Re}(z)\le \left| z \right|,\operatorname{Im}(z)\le \left| z \right|$
If $z=x+iy\in C$ then $\overline{z}=x-iy$
On multiplying $z$ and $\overline{z}$, we get
$\begin{align}
& z\overline{z}=(x+iy)(x-iy) \\
& \text{ }={{x}^{2}}+{{y}^{2}} \\
& \text{ }={{\left| z \right|}^{2}} \\
\end{align}$
Applying this for the given expression $\left| {{z}_{1}}+{{z}_{2}} \right|$
$\begin{align}
& {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}=({{z}_{1}}+{{z}_{2}})(\overline{{{z}_{1}}+{{z}_{2}}}) \\
& \text{ }=({{z}_{1}}+{{z}_{2}})(\overline{{{z}_{1}}}+\overline{{{z}_{2}}}) \\
& \text{ }={{z}_{1}}\overline{{{z}_{1}}}+{{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}}+{{z}_{2}}\overline{{{z}_{2}}} \\
& \text{ }={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})\text{ }...(1) \\
\end{align}$
For finding the term $({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})$, consider ${{z}_{1}}=a+ib;{{z}_{2}}=c+id$
$\begin{align}
& ({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})=(a+ib)(c-id)+(a-ib)(c+id) \\
& \text{ }=ac-iad+ibc+bd+ac+iad-ibc+bd \\
& \text{ }=2(ac+bd) \\
& \text{ }=2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}}) \\
\end{align}$
Then, on substituting in (1), we get
${{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\text{ }...(2)$
But we have $\operatorname{Re}(z)\le \left| z \right|$
So,
\[\begin{align}
& \operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\le \left| {{z}_{1}}\overline{{{z}_{2}}} \right|=\left| {{z}_{1}} \right|\left| \overline{{{z}_{2}}} \right|=\left| {{z}_{1}} \right|\left| {{z}_{2}} \right| \\
& \Rightarrow \operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\le \left| {{z}_{1}} \right|\left| {{z}_{2}} \right|\text{ }...(3) \\
\end{align}\]
Thus, from (2) and (3),
\[\begin{align}
& {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}}) \\
& \Rightarrow {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\left| {{z}_{1}} \right|\left| {{z}_{2}} \right| \\
& \Rightarrow {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le {{\left( \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right| \right)}^{2}} \\
& \therefore {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right| \\
\end{align}\]
Thus, Option (A) is correct.
Note: Here we need to apply the properties of complex numbers, to find the given expression. By applying appropriate formulae, the required value is obtained.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
