
If ${{z}_{1}}$ and ${{z}_{2}}$ are two complex numbers, then $\left| {{z}_{1}}+{{z}_{2}} \right|$ is
A. $\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|$
B. $\le \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|$
C. $<\left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|$
D. $>\left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|$
Answer
162k+ views
Hint: In this question, we are to prove the given property of the complex numbers. For this, the basic operations are applied.
Formula used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
Some of the basic properties of complex numbers are:
$\operatorname{Re}(z)\le \left| z \right|,\operatorname{Im}(z)\le \left| z \right|$
$\begin{align}
& \overline{{{z}_{1}}+{{z}_{2}}}=\overline{{{z}_{1}}}+\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}-{{z}_{2}}}=\overline{{{z}_{1}}}-\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}{{z}_{2}}}=\overline{{{z}_{1}}}\overline{{{z}_{2}}} \\
& \left( \overline{{}^{{{z}_{1}}}/{}_{{{z}_{2}}}} \right)={}^{\overline{{{z}_{1}}}}/{}_{\overline{{{z}_{2}}}};{{z}_{2}}\ne 0 \\
\end{align}$
Complete step by step solution: Given that, ${{z}_{1}}$ and ${{z}_{2}}$ are two complex numbers.
So, we have
$\operatorname{Re}(z)\le \left| z \right|,\operatorname{Im}(z)\le \left| z \right|$
If $z=x+iy\in C$ then $\overline{z}=x-iy$
On multiplying $z$ and $\overline{z}$, we get
$\begin{align}
& z\overline{z}=(x+iy)(x-iy) \\
& \text{ }={{x}^{2}}+{{y}^{2}} \\
& \text{ }={{\left| z \right|}^{2}} \\
\end{align}$
Applying this for the given expression $\left| {{z}_{1}}+{{z}_{2}} \right|$
$\begin{align}
& {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}=({{z}_{1}}+{{z}_{2}})(\overline{{{z}_{1}}+{{z}_{2}}}) \\
& \text{ }=({{z}_{1}}+{{z}_{2}})(\overline{{{z}_{1}}}+\overline{{{z}_{2}}}) \\
& \text{ }={{z}_{1}}\overline{{{z}_{1}}}+{{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}}+{{z}_{2}}\overline{{{z}_{2}}} \\
& \text{ }={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})\text{ }...(1) \\
\end{align}$
For finding the term $({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})$, consider ${{z}_{1}}=a+ib;{{z}_{2}}=c+id$
$\begin{align}
& ({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})=(a+ib)(c-id)+(a-ib)(c+id) \\
& \text{ }=ac-iad+ibc+bd+ac+iad-ibc+bd \\
& \text{ }=2(ac+bd) \\
& \text{ }=2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}}) \\
\end{align}$
Then, on substituting in (1), we get
${{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\text{ }...(2)$
But we have $\operatorname{Re}(z)\le \left| z \right|$
So,
\[\begin{align}
& \operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\le \left| {{z}_{1}}\overline{{{z}_{2}}} \right|=\left| {{z}_{1}} \right|\left| \overline{{{z}_{2}}} \right|=\left| {{z}_{1}} \right|\left| {{z}_{2}} \right| \\
& \Rightarrow \operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\le \left| {{z}_{1}} \right|\left| {{z}_{2}} \right|\text{ }...(3) \\
\end{align}\]
Thus, from (2) and (3),
\[\begin{align}
& {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}}) \\
& \Rightarrow {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\left| {{z}_{1}} \right|\left| {{z}_{2}} \right| \\
& \Rightarrow {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le {{\left( \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right| \right)}^{2}} \\
& \therefore {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right| \\
\end{align}\]
Thus, Option (A) is correct.
Note: Here we need to apply the properties of complex numbers, to find the given expression. By applying appropriate formulae, the required value is obtained.
Formula used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
Some of the basic properties of complex numbers are:
$\operatorname{Re}(z)\le \left| z \right|,\operatorname{Im}(z)\le \left| z \right|$
$\begin{align}
& \overline{{{z}_{1}}+{{z}_{2}}}=\overline{{{z}_{1}}}+\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}-{{z}_{2}}}=\overline{{{z}_{1}}}-\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}{{z}_{2}}}=\overline{{{z}_{1}}}\overline{{{z}_{2}}} \\
& \left( \overline{{}^{{{z}_{1}}}/{}_{{{z}_{2}}}} \right)={}^{\overline{{{z}_{1}}}}/{}_{\overline{{{z}_{2}}}};{{z}_{2}}\ne 0 \\
\end{align}$
Complete step by step solution: Given that, ${{z}_{1}}$ and ${{z}_{2}}$ are two complex numbers.
So, we have
$\operatorname{Re}(z)\le \left| z \right|,\operatorname{Im}(z)\le \left| z \right|$
If $z=x+iy\in C$ then $\overline{z}=x-iy$
On multiplying $z$ and $\overline{z}$, we get
$\begin{align}
& z\overline{z}=(x+iy)(x-iy) \\
& \text{ }={{x}^{2}}+{{y}^{2}} \\
& \text{ }={{\left| z \right|}^{2}} \\
\end{align}$
Applying this for the given expression $\left| {{z}_{1}}+{{z}_{2}} \right|$
$\begin{align}
& {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}=({{z}_{1}}+{{z}_{2}})(\overline{{{z}_{1}}+{{z}_{2}}}) \\
& \text{ }=({{z}_{1}}+{{z}_{2}})(\overline{{{z}_{1}}}+\overline{{{z}_{2}}}) \\
& \text{ }={{z}_{1}}\overline{{{z}_{1}}}+{{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}}+{{z}_{2}}\overline{{{z}_{2}}} \\
& \text{ }={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})\text{ }...(1) \\
\end{align}$
For finding the term $({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})$, consider ${{z}_{1}}=a+ib;{{z}_{2}}=c+id$
$\begin{align}
& ({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})=(a+ib)(c-id)+(a-ib)(c+id) \\
& \text{ }=ac-iad+ibc+bd+ac+iad-ibc+bd \\
& \text{ }=2(ac+bd) \\
& \text{ }=2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}}) \\
\end{align}$
Then, on substituting in (1), we get
${{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\text{ }...(2)$
But we have $\operatorname{Re}(z)\le \left| z \right|$
So,
\[\begin{align}
& \operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\le \left| {{z}_{1}}\overline{{{z}_{2}}} \right|=\left| {{z}_{1}} \right|\left| \overline{{{z}_{2}}} \right|=\left| {{z}_{1}} \right|\left| {{z}_{2}} \right| \\
& \Rightarrow \operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\le \left| {{z}_{1}} \right|\left| {{z}_{2}} \right|\text{ }...(3) \\
\end{align}\]
Thus, from (2) and (3),
\[\begin{align}
& {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}}) \\
& \Rightarrow {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\left| {{z}_{1}} \right|\left| {{z}_{2}} \right| \\
& \Rightarrow {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le {{\left( \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right| \right)}^{2}} \\
& \therefore {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right| \\
\end{align}\]
Thus, Option (A) is correct.
Note: Here we need to apply the properties of complex numbers, to find the given expression. By applying appropriate formulae, the required value is obtained.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
