
If ${{z}_{1}}$ and ${{z}_{2}}$ are two complex numbers, then $\left| {{z}_{1}}+{{z}_{2}} \right|$ is
A. $\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|$
B. $\le \left| {{z}_{1}} \right|-\left| {{z}_{2}} \right|$
C. $<\left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|$
D. $>\left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|$
Answer
217.8k+ views
Hint: In this question, we are to prove the given property of the complex numbers. For this, the basic operations are applied.
Formula used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
Some of the basic properties of complex numbers are:
$\operatorname{Re}(z)\le \left| z \right|,\operatorname{Im}(z)\le \left| z \right|$
$\begin{align}
& \overline{{{z}_{1}}+{{z}_{2}}}=\overline{{{z}_{1}}}+\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}-{{z}_{2}}}=\overline{{{z}_{1}}}-\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}{{z}_{2}}}=\overline{{{z}_{1}}}\overline{{{z}_{2}}} \\
& \left( \overline{{}^{{{z}_{1}}}/{}_{{{z}_{2}}}} \right)={}^{\overline{{{z}_{1}}}}/{}_{\overline{{{z}_{2}}}};{{z}_{2}}\ne 0 \\
\end{align}$
Complete step by step solution: Given that, ${{z}_{1}}$ and ${{z}_{2}}$ are two complex numbers.
So, we have
$\operatorname{Re}(z)\le \left| z \right|,\operatorname{Im}(z)\le \left| z \right|$
If $z=x+iy\in C$ then $\overline{z}=x-iy$
On multiplying $z$ and $\overline{z}$, we get
$\begin{align}
& z\overline{z}=(x+iy)(x-iy) \\
& \text{ }={{x}^{2}}+{{y}^{2}} \\
& \text{ }={{\left| z \right|}^{2}} \\
\end{align}$
Applying this for the given expression $\left| {{z}_{1}}+{{z}_{2}} \right|$
$\begin{align}
& {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}=({{z}_{1}}+{{z}_{2}})(\overline{{{z}_{1}}+{{z}_{2}}}) \\
& \text{ }=({{z}_{1}}+{{z}_{2}})(\overline{{{z}_{1}}}+\overline{{{z}_{2}}}) \\
& \text{ }={{z}_{1}}\overline{{{z}_{1}}}+{{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}}+{{z}_{2}}\overline{{{z}_{2}}} \\
& \text{ }={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})\text{ }...(1) \\
\end{align}$
For finding the term $({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})$, consider ${{z}_{1}}=a+ib;{{z}_{2}}=c+id$
$\begin{align}
& ({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})=(a+ib)(c-id)+(a-ib)(c+id) \\
& \text{ }=ac-iad+ibc+bd+ac+iad-ibc+bd \\
& \text{ }=2(ac+bd) \\
& \text{ }=2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}}) \\
\end{align}$
Then, on substituting in (1), we get
${{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\text{ }...(2)$
But we have $\operatorname{Re}(z)\le \left| z \right|$
So,
\[\begin{align}
& \operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\le \left| {{z}_{1}}\overline{{{z}_{2}}} \right|=\left| {{z}_{1}} \right|\left| \overline{{{z}_{2}}} \right|=\left| {{z}_{1}} \right|\left| {{z}_{2}} \right| \\
& \Rightarrow \operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\le \left| {{z}_{1}} \right|\left| {{z}_{2}} \right|\text{ }...(3) \\
\end{align}\]
Thus, from (2) and (3),
\[\begin{align}
& {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}}) \\
& \Rightarrow {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\left| {{z}_{1}} \right|\left| {{z}_{2}} \right| \\
& \Rightarrow {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le {{\left( \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right| \right)}^{2}} \\
& \therefore {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right| \\
\end{align}\]
Thus, Option (A) is correct.
Note: Here we need to apply the properties of complex numbers, to find the given expression. By applying appropriate formulae, the required value is obtained.
Formula used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
Some of the basic properties of complex numbers are:
$\operatorname{Re}(z)\le \left| z \right|,\operatorname{Im}(z)\le \left| z \right|$
$\begin{align}
& \overline{{{z}_{1}}+{{z}_{2}}}=\overline{{{z}_{1}}}+\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}-{{z}_{2}}}=\overline{{{z}_{1}}}-\overline{{{z}_{2}}} \\
& \overline{{{z}_{1}}{{z}_{2}}}=\overline{{{z}_{1}}}\overline{{{z}_{2}}} \\
& \left( \overline{{}^{{{z}_{1}}}/{}_{{{z}_{2}}}} \right)={}^{\overline{{{z}_{1}}}}/{}_{\overline{{{z}_{2}}}};{{z}_{2}}\ne 0 \\
\end{align}$
Complete step by step solution: Given that, ${{z}_{1}}$ and ${{z}_{2}}$ are two complex numbers.
So, we have
$\operatorname{Re}(z)\le \left| z \right|,\operatorname{Im}(z)\le \left| z \right|$
If $z=x+iy\in C$ then $\overline{z}=x-iy$
On multiplying $z$ and $\overline{z}$, we get
$\begin{align}
& z\overline{z}=(x+iy)(x-iy) \\
& \text{ }={{x}^{2}}+{{y}^{2}} \\
& \text{ }={{\left| z \right|}^{2}} \\
\end{align}$
Applying this for the given expression $\left| {{z}_{1}}+{{z}_{2}} \right|$
$\begin{align}
& {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}=({{z}_{1}}+{{z}_{2}})(\overline{{{z}_{1}}+{{z}_{2}}}) \\
& \text{ }=({{z}_{1}}+{{z}_{2}})(\overline{{{z}_{1}}}+\overline{{{z}_{2}}}) \\
& \text{ }={{z}_{1}}\overline{{{z}_{1}}}+{{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}}+{{z}_{2}}\overline{{{z}_{2}}} \\
& \text{ }={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})\text{ }...(1) \\
\end{align}$
For finding the term $({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})$, consider ${{z}_{1}}=a+ib;{{z}_{2}}=c+id$
$\begin{align}
& ({{z}_{1}}\overline{{{z}_{2}}}+{{z}_{2}}\overline{{{z}_{1}}})=(a+ib)(c-id)+(a-ib)(c+id) \\
& \text{ }=ac-iad+ibc+bd+ac+iad-ibc+bd \\
& \text{ }=2(ac+bd) \\
& \text{ }=2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}}) \\
\end{align}$
Then, on substituting in (1), we get
${{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\text{ }...(2)$
But we have $\operatorname{Re}(z)\le \left| z \right|$
So,
\[\begin{align}
& \operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\le \left| {{z}_{1}}\overline{{{z}_{2}}} \right|=\left| {{z}_{1}} \right|\left| \overline{{{z}_{2}}} \right|=\left| {{z}_{1}} \right|\left| {{z}_{2}} \right| \\
& \Rightarrow \operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}})\le \left| {{z}_{1}} \right|\left| {{z}_{2}} \right|\text{ }...(3) \\
\end{align}\]
Thus, from (2) and (3),
\[\begin{align}
& {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\operatorname{Re}({{z}_{1}}\overline{{{z}_{2}}}) \\
& \Rightarrow {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+2\left| {{z}_{1}} \right|\left| {{z}_{2}} \right| \\
& \Rightarrow {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le {{\left( \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right| \right)}^{2}} \\
& \therefore {{\left| {{z}_{1}}+{{z}_{2}} \right|}^{2}}\le \left| {{z}_{1}} \right|+\left| {{z}_{2}} \right| \\
\end{align}\]
Thus, Option (A) is correct.
Note: Here we need to apply the properties of complex numbers, to find the given expression. By applying appropriate formulae, the required value is obtained.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

