
If \[(y - x),2(y - a)\]and \[(y - z)\] are in H.P., then \[x - a,y - a,z - a\] are in
A. A.P.
B. G.P.
C. H.P.
D. None of these
Answer
221.4k+ views
Hint
Taking the reciprocals of the arithmetic progression that does not contain zero yields a sequence of real numbers known as a harmonic progression (HP). Any phrase in a harmonic progression is regarded as the harmonic mean of its two neighbours. Making the appropriate AP series is the first step in solving an issue involving harmonic progression. If the reciprocal of the terms is in AP, a series of numbers is referred to as a harmonic progression.
AP, GP, and HP stand for the average or mean of the series. Arithmetic Mean, Geometric Mean, and Harmonic Mean, respectively, are denoted by the letters AM, GM, and HM. AM, GM, and HM are abbreviations for Arithmetic Progression (AP), Geometric Progression (GP), and Harmonic Progression (HP).
Complete step-by-step solution
The given equation is \[(y - x),2(y - a),(y - z)\]
This equation is in Harmonic progression.
Here, \[\frac{1}{{(y - x)}},\frac{1}{{2(y - a)}},\frac{1}{{(y - z)}}\]are in A.P
The equation then becomes
\[ = > \frac{1}{{2(y - a)}} - \frac{1}{{(y - x)}} = \frac{1}{{(y - z)}} - \frac{1}{{2(y - a)}}\]
By solving, it becomes
\[ = > \frac{{2a - y - z}}{{y - x}} = \frac{{y + z - 2a}}{{y - z}}\]
\[ = > \frac{{(x - a) + (y - a)}}{{(x - a) - (y - a)}} = \frac{{(y - a) + (z - a)}}{{(y - a) - (z - a)}}\]
It is simplified to become
\[ = > \frac{{(x - a)}}{{(y - a)}} = \frac{{(y - a)}}{{(z - a)}}\]
\[ = > {(y - a)^2} = (x - a)(z - a)\]
So, \[(y - x),2(y - a)\]and \[(y - z)\] are in Geometric progression.
Therefore, the correct option is B.
Note
A mathematical sequence known as a geometric progression (GP) is one in which each following phrase is generated by multiplying each preceding term by a fixed integer, or "common ratio." This progression is sometimes referred to as a pattern-following geometric sequence of numbers. A series of terms is referred to as a geometric progression if each next term is produced by multiplying each previous term by a fixed amount. (GP), whereas the common ratio is the name given to the constant value.
Taking the reciprocals of the arithmetic progression that does not contain zero yields a sequence of real numbers known as a harmonic progression (HP). Any phrase in a harmonic progression is regarded as the harmonic mean of its two neighbours. Making the appropriate AP series is the first step in solving an issue involving harmonic progression. If the reciprocal of the terms is in AP, a series of numbers is referred to as a harmonic progression.
AP, GP, and HP stand for the average or mean of the series. Arithmetic Mean, Geometric Mean, and Harmonic Mean, respectively, are denoted by the letters AM, GM, and HM. AM, GM, and HM are abbreviations for Arithmetic Progression (AP), Geometric Progression (GP), and Harmonic Progression (HP).
Complete step-by-step solution
The given equation is \[(y - x),2(y - a),(y - z)\]
This equation is in Harmonic progression.
Here, \[\frac{1}{{(y - x)}},\frac{1}{{2(y - a)}},\frac{1}{{(y - z)}}\]are in A.P
The equation then becomes
\[ = > \frac{1}{{2(y - a)}} - \frac{1}{{(y - x)}} = \frac{1}{{(y - z)}} - \frac{1}{{2(y - a)}}\]
By solving, it becomes
\[ = > \frac{{2a - y - z}}{{y - x}} = \frac{{y + z - 2a}}{{y - z}}\]
\[ = > \frac{{(x - a) + (y - a)}}{{(x - a) - (y - a)}} = \frac{{(y - a) + (z - a)}}{{(y - a) - (z - a)}}\]
It is simplified to become
\[ = > \frac{{(x - a)}}{{(y - a)}} = \frac{{(y - a)}}{{(z - a)}}\]
\[ = > {(y - a)^2} = (x - a)(z - a)\]
So, \[(y - x),2(y - a)\]and \[(y - z)\] are in Geometric progression.
Therefore, the correct option is B.
Note
A mathematical sequence known as a geometric progression (GP) is one in which each following phrase is generated by multiplying each preceding term by a fixed integer, or "common ratio." This progression is sometimes referred to as a pattern-following geometric sequence of numbers. A series of terms is referred to as a geometric progression if each next term is produced by multiplying each previous term by a fixed amount. (GP), whereas the common ratio is the name given to the constant value.
Recently Updated Pages
JEE Main 2022 (July 26th Shift 1) Physics Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Chemistry Question Paper with Answer Key

Apparent Frequency Explained: Formula, Uses & Examples

JEE Main 2023 (January 30th Shift 2) Chemistry Question Paper with Answer Key

Displacement Current and Maxwell’s Equations Explained

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

