
If $y = {\sec ^{ - 1}}\left[ {\text{cosec }x} \right] + \text{cosec }^{ - 1}\left[ {\sec x} \right] + {\sin ^{ - 1}}\left[ {\cos x} \right] + {\cos ^{ - 1}}\left[ {\sin x} \right]$, then calculate $\dfrac{{dy}}{{dx}}$.
A. 0
B. 2
C. -2
D. -4
Answer
216k+ views
Hint: First apply complementary angles in trigonometry ratios to simplify the given equation. Then apply the derivative formula to the equation to find $\dfrac{{dy}}{{dx}}$.
Formula Used:
Trigonometry ratios of the complementary angle
$\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)$
$\cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right)$
$\sec \theta = \text{cosec }\left( {{{90}^ \circ } - \theta } \right)$
$\text{cosec }\theta = \sec \left( {{{90}^ \circ } - \theta } \right)$
${\sec ^{ - 1}}\left( {\sec \theta } \right) = \theta $
$\text{cosec }^{ - 1}\left( {\text{cosec }\theta } \right) = \theta $
${\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta $
${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $
$\dfrac{d}{{dx}}\left( {f\left( x \right) \pm g\left( x \right)} \right) = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$
$\dfrac{d}{{dx}}\left( {mx} \right) = m$ where $m$ is constant.
$\dfrac{d}{{dx}}\left( c \right) = 0$ where $c$ is constant
Complete step by step solution:
Given equation is
$y = {\sec ^{ - 1}}\left[ {\text{cosec }x} \right] + \text{cosec }^{ - 1}\left[ {\sec x} \right] + {\sin ^{ - 1}}\left[ {\cos x} \right] + {\cos ^{ - 1}}\left[ {\sin x} \right]$
we will apply trigonometry ratios of complementary angles $\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)$, $\cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right)$, $\sec \theta = \cos ec\left( {{{90}^ \circ } - \theta } \right)$ and $\text{cosec }\theta = \sec \left( {{{90}^ \circ } - \theta } \right)$.
$y = {\sec ^{ - 1}}\left[ {\sec \left( {{{90}^ \circ } - x} \right)} \right] + \text{cosec }^{ - 1}\left[ {\text{cosec }\left( {{{90}^ \circ } - x} \right)} \right] + {\sin ^{ - 1}}\left[ {\sin \left( {{{90}^ \circ } - x} \right)} \right] + {\cos ^{ - 1}}\left[ {\cos \left( {{{90}^ \circ } - x} \right)} \right]$
Applying the formulas ${\sec ^{ - 1}}\left( {\sec \theta } \right) = \theta $ , $\text{cosec }^{ - 1}\left( {\text{cosec }\theta } \right) = \theta $, ${\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta $, and ${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $
$ \Rightarrow y = \left( {{{90}^ \circ } - x} \right) + \left( {{{90}^ \circ } - x} \right) + \left( {{{90}^ \circ } - x} \right) + \left( {{{90}^ \circ } - x} \right)$
$ \Rightarrow y = {360^ \circ } - 4x$
We know that, ${360^ \circ } = 2\pi $.
$ \Rightarrow y = 2\pi - 4x$
Differentiate with respect to $x$
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {2\pi - 4x} \right)$
Apply the formula $\dfrac{d}{{dx}}\left( {f\left( x \right) \pm g\left( x \right)} \right) = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {2\pi } \right) - \dfrac{d}{{dx}}\left( {4x} \right)$
Now applying the formula $\dfrac{d}{{dx}}\left( {mx} \right) = m$ and $\dfrac{d}{{dx}}\left( c \right) = 0$
$ \Rightarrow \dfrac{{dy}}{{dx}} = 0 - 4$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - 4$
Option ‘D’ is correct
Note: Students often start to solve problems directly. They did not apply the complimentary angles of trigonometry ratios to simplify $y = {\sec ^{ - 1}}\left[ {\text{cosec }x} \right] + \text{cosec }^{ - 1}\left[ {\sec x} \right] + {\sin ^{ - 1}}\left[ {\cos x} \right] + {\cos ^{ - 1}}\left[ {\sin x} \right]$. It becomes lengthy and complicated. So, first we will apply the complementary angles of trigonometry ratios and formulas inverse function to simplify the equation. Then we derive it.
Formula Used:
Trigonometry ratios of the complementary angle
$\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)$
$\cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right)$
$\sec \theta = \text{cosec }\left( {{{90}^ \circ } - \theta } \right)$
$\text{cosec }\theta = \sec \left( {{{90}^ \circ } - \theta } \right)$
${\sec ^{ - 1}}\left( {\sec \theta } \right) = \theta $
$\text{cosec }^{ - 1}\left( {\text{cosec }\theta } \right) = \theta $
${\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta $
${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $
$\dfrac{d}{{dx}}\left( {f\left( x \right) \pm g\left( x \right)} \right) = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$
$\dfrac{d}{{dx}}\left( {mx} \right) = m$ where $m$ is constant.
$\dfrac{d}{{dx}}\left( c \right) = 0$ where $c$ is constant
Complete step by step solution:
Given equation is
$y = {\sec ^{ - 1}}\left[ {\text{cosec }x} \right] + \text{cosec }^{ - 1}\left[ {\sec x} \right] + {\sin ^{ - 1}}\left[ {\cos x} \right] + {\cos ^{ - 1}}\left[ {\sin x} \right]$
we will apply trigonometry ratios of complementary angles $\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)$, $\cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right)$, $\sec \theta = \cos ec\left( {{{90}^ \circ } - \theta } \right)$ and $\text{cosec }\theta = \sec \left( {{{90}^ \circ } - \theta } \right)$.
$y = {\sec ^{ - 1}}\left[ {\sec \left( {{{90}^ \circ } - x} \right)} \right] + \text{cosec }^{ - 1}\left[ {\text{cosec }\left( {{{90}^ \circ } - x} \right)} \right] + {\sin ^{ - 1}}\left[ {\sin \left( {{{90}^ \circ } - x} \right)} \right] + {\cos ^{ - 1}}\left[ {\cos \left( {{{90}^ \circ } - x} \right)} \right]$
Applying the formulas ${\sec ^{ - 1}}\left( {\sec \theta } \right) = \theta $ , $\text{cosec }^{ - 1}\left( {\text{cosec }\theta } \right) = \theta $, ${\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta $, and ${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $
$ \Rightarrow y = \left( {{{90}^ \circ } - x} \right) + \left( {{{90}^ \circ } - x} \right) + \left( {{{90}^ \circ } - x} \right) + \left( {{{90}^ \circ } - x} \right)$
$ \Rightarrow y = {360^ \circ } - 4x$
We know that, ${360^ \circ } = 2\pi $.
$ \Rightarrow y = 2\pi - 4x$
Differentiate with respect to $x$
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {2\pi - 4x} \right)$
Apply the formula $\dfrac{d}{{dx}}\left( {f\left( x \right) \pm g\left( x \right)} \right) = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {2\pi } \right) - \dfrac{d}{{dx}}\left( {4x} \right)$
Now applying the formula $\dfrac{d}{{dx}}\left( {mx} \right) = m$ and $\dfrac{d}{{dx}}\left( c \right) = 0$
$ \Rightarrow \dfrac{{dy}}{{dx}} = 0 - 4$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - 4$
Option ‘D’ is correct
Note: Students often start to solve problems directly. They did not apply the complimentary angles of trigonometry ratios to simplify $y = {\sec ^{ - 1}}\left[ {\text{cosec }x} \right] + \text{cosec }^{ - 1}\left[ {\sec x} \right] + {\sin ^{ - 1}}\left[ {\cos x} \right] + {\cos ^{ - 1}}\left[ {\sin x} \right]$. It becomes lengthy and complicated. So, first we will apply the complementary angles of trigonometry ratios and formulas inverse function to simplify the equation. Then we derive it.
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

