
If $y = b\cos \left( {\log {{\left( {\dfrac{x}{n}} \right)}^n}} \right)$, then $\dfrac{{dy}}{{dx}}$equals
A. $ - nb\sin \left( {\log {{\left( {\dfrac{x}{n}} \right)}^n}} \right)$
B. $nb\sin \left( {\log {{\left( {\dfrac{x}{n}} \right)}^n}} \right)$
C. $ - \dfrac{{nb}}{x}\sin \left( {\log {{\left( {\dfrac{x}{n}} \right)}^n}} \right)$
D. None of these
Answer
232.8k+ views
Hint: In the given problem, we are required to differentiate $y = b\cos \left( {\log {{\left( {\dfrac{x}{n}} \right)}^n}} \right)$ with respect to x. The given function is a composite function, so we will have to apply chain rule of differentiation in the process of differentiation. So, differentiation of $y = b\cos \left( {\log {{\left( {\dfrac{x}{n}} \right)}^n}} \right)$ with respect to x will be done layer by layer. Also, we will use properties of logarithmic functions to simplify the differentiation of the function.
Formula used:
1. $\log {p^q} = q\log p$
2. Chain rule: $\dfrac{d}{dx} f(g(x)) = f^{‘}(g(x)).g^{‘}(x)$
3. $\dfrac{d}{dx} \cos x = - sin x$
4. $\dfrac{d}{dx} \log x = \dfrac{1}{x}$
Complete step by step solution:
We are given, $y = b\cos \left( {\log {{\left( {\dfrac{x}{n}} \right)}^n}} \right)$.
So, $\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {b\cos \left( {\log {{\left( {\dfrac{x}{n}} \right)}^n}} \right)} \right]$
Now, we use the property of logarithm $\log {p^q} = q\log p$.
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {b\cos \left( {n\log \left( {\dfrac{x}{n}} \right)} \right)} \right]$
Taking constant b out of differentiation, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = b\dfrac{d}{{dx}}\left[ {\cos \left( {n\log \left( {\dfrac{x}{n}} \right)} \right)} \right]$
Now, Let us assume $u = \left( {n\log \left( {\dfrac{x}{n}} \right)} \right)$. So substituting $\left( {n\log \left( {\dfrac{x}{n}} \right)} \right)$ as $u$, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = b\dfrac{d}{{dx}}\left[ {\cos \left( u \right)} \right] = b\dfrac{d}{{du}}\left[ {\cos \left( u \right)} \right] \times \dfrac{{du}}{{dx}}$
Derivative of $\cos u$ with respect to u is $ - \sin u$. So, we have,
$ \Rightarrow \dfrac{{dy}}{{dx}} = b\left[ { - \sin \left( u \right)} \right] \times \dfrac{{du}}{{dx}}$
Now, putting back $u$ as $\left( {n\log \left( {\dfrac{x}{n}} \right)} \right)$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = b\left[ { - \sin \left( {\left( {n\log \left( {\dfrac{x}{n}} \right)} \right)} \right)} \right] \times \dfrac{d}{{dx}}\left( {n\log \left( {\dfrac{x}{n}} \right)} \right)\] because \[\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {n\log \left( {\dfrac{x}{n}} \right)} \right)\]
Taking constants out of the differentiation, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - b\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right) \times n\dfrac{d}{{dx}}\left( {\log \left( {\dfrac{x}{n}} \right)} \right)\]
Now, Let us assume $v = \left( {\dfrac{x}{n}} \right)$. So, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - b\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right) \times n\dfrac{d}{{dx}}\left( {\log v} \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - b\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right) \times n\dfrac{d}{{dv}}\left( {\log v} \right) \times \dfrac{{dv}}{{dx}}\]
Now, we know that derivative of $\log y$ with respect to y is \[\dfrac{1}{y}\].
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - b\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right) \times \dfrac{n}{v} \times \dfrac{{dv}}{{dx}}\]
Now, putting back $v = \left( {\dfrac{x}{n}} \right)$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - b\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right) \times \dfrac{n}{{\left( {\dfrac{x}{n}} \right)}} \times \dfrac{d}{{dx}}\left( {\dfrac{x}{n}} \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - b\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right) \times \dfrac{n}{{\left( {\dfrac{x}{n}} \right)}} \times \dfrac{d}{{dx}}\left( {\dfrac{x}{n}} \right)\]
So, substituting the equivalent expression of $\dfrac{d}{{dx}}\left( {\dfrac{x}{n}} \right)$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - b\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right) \times \dfrac{{{n^2}}}{x} \times \dfrac{1}{n}\]
Simplifying the product of expression, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{bn}}{x}\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right)\]
Again, using the logarithmic property $\log {p^q} = q\log p$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{bn}}{x}\sin \left( {\log {{\left( {\dfrac{x}{n}} \right)}^n}} \right)\]
So, option (C) is the correct answer.
Note: The derivatives of basic trigonometric functions must be learned by heart in order to find derivatives of complex composite functions using the chain rule of differentiation. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer.
Formula used:
1. $\log {p^q} = q\log p$
2. Chain rule: $\dfrac{d}{dx} f(g(x)) = f^{‘}(g(x)).g^{‘}(x)$
3. $\dfrac{d}{dx} \cos x = - sin x$
4. $\dfrac{d}{dx} \log x = \dfrac{1}{x}$
Complete step by step solution:
We are given, $y = b\cos \left( {\log {{\left( {\dfrac{x}{n}} \right)}^n}} \right)$.
So, $\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {b\cos \left( {\log {{\left( {\dfrac{x}{n}} \right)}^n}} \right)} \right]$
Now, we use the property of logarithm $\log {p^q} = q\log p$.
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {b\cos \left( {n\log \left( {\dfrac{x}{n}} \right)} \right)} \right]$
Taking constant b out of differentiation, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = b\dfrac{d}{{dx}}\left[ {\cos \left( {n\log \left( {\dfrac{x}{n}} \right)} \right)} \right]$
Now, Let us assume $u = \left( {n\log \left( {\dfrac{x}{n}} \right)} \right)$. So substituting $\left( {n\log \left( {\dfrac{x}{n}} \right)} \right)$ as $u$, we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = b\dfrac{d}{{dx}}\left[ {\cos \left( u \right)} \right] = b\dfrac{d}{{du}}\left[ {\cos \left( u \right)} \right] \times \dfrac{{du}}{{dx}}$
Derivative of $\cos u$ with respect to u is $ - \sin u$. So, we have,
$ \Rightarrow \dfrac{{dy}}{{dx}} = b\left[ { - \sin \left( u \right)} \right] \times \dfrac{{du}}{{dx}}$
Now, putting back $u$ as $\left( {n\log \left( {\dfrac{x}{n}} \right)} \right)$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = b\left[ { - \sin \left( {\left( {n\log \left( {\dfrac{x}{n}} \right)} \right)} \right)} \right] \times \dfrac{d}{{dx}}\left( {n\log \left( {\dfrac{x}{n}} \right)} \right)\] because \[\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {n\log \left( {\dfrac{x}{n}} \right)} \right)\]
Taking constants out of the differentiation, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - b\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right) \times n\dfrac{d}{{dx}}\left( {\log \left( {\dfrac{x}{n}} \right)} \right)\]
Now, Let us assume $v = \left( {\dfrac{x}{n}} \right)$. So, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - b\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right) \times n\dfrac{d}{{dx}}\left( {\log v} \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - b\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right) \times n\dfrac{d}{{dv}}\left( {\log v} \right) \times \dfrac{{dv}}{{dx}}\]
Now, we know that derivative of $\log y$ with respect to y is \[\dfrac{1}{y}\].
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - b\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right) \times \dfrac{n}{v} \times \dfrac{{dv}}{{dx}}\]
Now, putting back $v = \left( {\dfrac{x}{n}} \right)$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - b\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right) \times \dfrac{n}{{\left( {\dfrac{x}{n}} \right)}} \times \dfrac{d}{{dx}}\left( {\dfrac{x}{n}} \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - b\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right) \times \dfrac{n}{{\left( {\dfrac{x}{n}} \right)}} \times \dfrac{d}{{dx}}\left( {\dfrac{x}{n}} \right)\]
So, substituting the equivalent expression of $\dfrac{d}{{dx}}\left( {\dfrac{x}{n}} \right)$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - b\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right) \times \dfrac{{{n^2}}}{x} \times \dfrac{1}{n}\]
Simplifying the product of expression, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{bn}}{x}\sin \left( {n\log \left( {\dfrac{x}{n}} \right)} \right)\]
Again, using the logarithmic property $\log {p^q} = q\log p$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{bn}}{x}\sin \left( {\log {{\left( {\dfrac{x}{n}} \right)}^n}} \right)\]
So, option (C) is the correct answer.
Note: The derivatives of basic trigonometric functions must be learned by heart in order to find derivatives of complex composite functions using the chain rule of differentiation. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

