
If \[x=a{{\cos }^{3}}t,y=b{{\sin }^{3}}t\], then at the point \[\left( \dfrac{a}{2\sqrt{2}},\dfrac{a}{2\sqrt{2}} \right),\dfrac{dy}{dx}=\]
(a) $\dfrac{b}{a}$
(b) $-\dfrac{b}{a}$
(c) $\dfrac{a}{b}$
(d) $-\dfrac{a}{b}$
Answer
214.2k+ views
Hint:- Consider ‘x’ and ‘y’ separately, then differentiate them with respect to ‘t’ separately. Then apply the parametric form of derivation, i.e., \[\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}\]. Then substitute the value of the given point and find out the value of ‘t’ and solve further to obtain the desired result.
Complete step-by-step solution -
As per the given information, \[x=a{{\cos }^{3}}t,y=b{{\sin }^{3}}t.\]
For this first we will find \[\dfrac{dx}{dt},\dfrac{dy}{dt}.\]
So, deriving $'x'$ with respect to $'t'$, we get
\[\dfrac{dx}{dt}=\dfrac{d}{dt}(a{{\cos }^{3}}t)\]
Taking out the constant term, we get
\[\begin{align}
& \dfrac{dx}{dt}=a\dfrac{d}{dt}({{\cos }^{3}}t) \\
& \Rightarrow \dfrac{dx}{dt}=a(3{{\cos }^{2}}t)\dfrac{d}{dt}(\cos t) \\
\end{align}\]
We know derivative of $\cos x$ is $-\sin x$ , so we get
\[\begin{align}
& \dfrac{dx}{dt}=a\left( 3{{\cos }^{2}}t \right)(-\sin t) \\
& \Rightarrow \dfrac{dx}{dt}=-3a{{\cos }^{2}}t\sin t..........(i) \\
\end{align}\]
Now deriving $'y'$ with respect to $'t'$, we get
\[\dfrac{dy}{dt}=\dfrac{d}{dt}(b{{\sin }^{3}}t)\]
Taking out the constant term, we get
\[\begin{align}
& \dfrac{dy}{dt}=b\dfrac{d}{dt}(si{{n}^{3}}t) \\
& \Rightarrow \dfrac{dy}{dt}=b(3{{\sin }^{2}}t)\dfrac{d}{dt}(sint) \\
\end{align}\]
We know derivative of $\sin x$ is $\cos x$ , so we get
\[\begin{align}
& \dfrac{dy}{dt}=b\left( 3{{\sin }^{2}}t \right)(\cos t) \\
& \dfrac{dy}{dt}=3b{{\sin }^{2}}t\cos t..........(ii) \\
\end{align}\]
Now dividing equations (ii) by (i), we have
\[\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{3b{{\sin }^{2}}t\cos t}{-3a{{\cos }^{2}}t\sin t}\]
Cancelling like terms, we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{-b\sin t}{a\cos t}\]
But we know $\tan x=\dfrac{\sin x}{\cos x}$ , so above equation becomes
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{-b}{a}\tan t........(iii)\]
Now, let us find the value of $'t'$ at \[(x,y)=\left( \dfrac{a}{2\sqrt{2}},\dfrac{a}{2\sqrt{2}} \right)\].
As per the given information,
\[x=a{{\cos }^{3}}t\]
By substituting \[x=\dfrac{a}{2\sqrt{2}},\]we get,
\[\dfrac{a}{2\sqrt{2}}=a{{\cos }^{3}}t\]
\[\Rightarrow {{\cos }^{3}}(t)=\dfrac{1}{2\sqrt{2}}=\dfrac{1}{\sqrt{{{2}^{3}}}}\]
Taking cube root on both sides, we get
\[\Rightarrow \cos t=\dfrac{1}{\sqrt{2}}\]
We know $\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$ , so
\[\Rightarrow t=\dfrac{\pi }{4}\]
Now, substitute this value in \[\dfrac{dy}{dx}\], we get
\[\dfrac{dy}{dx}=-\dfrac{b}{a}\tan \left( \dfrac{\pi }{4} \right)\]
We know $\tan \left( \dfrac{\pi }{4} \right)=1$ , so
\[\dfrac{dy}{dx}=\dfrac{-b}{a}\]
Hence the correct answer is option (b).
Note: In this problem we may get stuck after finding \[\dfrac{dy}{dx}\] as this function is not in (x, y). So, we need to recheck how to get the value of $'t'$ from the given information and go further, i.e., \[x=a{{\cos }^{3}}t\]
By substituting \[x=\dfrac{a}{2\sqrt{2}},\]we get,
\[\dfrac{a}{2\sqrt{2}}=a{{\cos }^{3}}t\]
And find the value of $'t'$ .
Complete step-by-step solution -
As per the given information, \[x=a{{\cos }^{3}}t,y=b{{\sin }^{3}}t.\]
For this first we will find \[\dfrac{dx}{dt},\dfrac{dy}{dt}.\]
So, deriving $'x'$ with respect to $'t'$, we get
\[\dfrac{dx}{dt}=\dfrac{d}{dt}(a{{\cos }^{3}}t)\]
Taking out the constant term, we get
\[\begin{align}
& \dfrac{dx}{dt}=a\dfrac{d}{dt}({{\cos }^{3}}t) \\
& \Rightarrow \dfrac{dx}{dt}=a(3{{\cos }^{2}}t)\dfrac{d}{dt}(\cos t) \\
\end{align}\]
We know derivative of $\cos x$ is $-\sin x$ , so we get
\[\begin{align}
& \dfrac{dx}{dt}=a\left( 3{{\cos }^{2}}t \right)(-\sin t) \\
& \Rightarrow \dfrac{dx}{dt}=-3a{{\cos }^{2}}t\sin t..........(i) \\
\end{align}\]
Now deriving $'y'$ with respect to $'t'$, we get
\[\dfrac{dy}{dt}=\dfrac{d}{dt}(b{{\sin }^{3}}t)\]
Taking out the constant term, we get
\[\begin{align}
& \dfrac{dy}{dt}=b\dfrac{d}{dt}(si{{n}^{3}}t) \\
& \Rightarrow \dfrac{dy}{dt}=b(3{{\sin }^{2}}t)\dfrac{d}{dt}(sint) \\
\end{align}\]
We know derivative of $\sin x$ is $\cos x$ , so we get
\[\begin{align}
& \dfrac{dy}{dt}=b\left( 3{{\sin }^{2}}t \right)(\cos t) \\
& \dfrac{dy}{dt}=3b{{\sin }^{2}}t\cos t..........(ii) \\
\end{align}\]
Now dividing equations (ii) by (i), we have
\[\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{3b{{\sin }^{2}}t\cos t}{-3a{{\cos }^{2}}t\sin t}\]
Cancelling like terms, we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{-b\sin t}{a\cos t}\]
But we know $\tan x=\dfrac{\sin x}{\cos x}$ , so above equation becomes
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{-b}{a}\tan t........(iii)\]
Now, let us find the value of $'t'$ at \[(x,y)=\left( \dfrac{a}{2\sqrt{2}},\dfrac{a}{2\sqrt{2}} \right)\].
As per the given information,
\[x=a{{\cos }^{3}}t\]
By substituting \[x=\dfrac{a}{2\sqrt{2}},\]we get,
\[\dfrac{a}{2\sqrt{2}}=a{{\cos }^{3}}t\]
\[\Rightarrow {{\cos }^{3}}(t)=\dfrac{1}{2\sqrt{2}}=\dfrac{1}{\sqrt{{{2}^{3}}}}\]
Taking cube root on both sides, we get
\[\Rightarrow \cos t=\dfrac{1}{\sqrt{2}}\]
We know $\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$ , so
\[\Rightarrow t=\dfrac{\pi }{4}\]
Now, substitute this value in \[\dfrac{dy}{dx}\], we get
\[\dfrac{dy}{dx}=-\dfrac{b}{a}\tan \left( \dfrac{\pi }{4} \right)\]
We know $\tan \left( \dfrac{\pi }{4} \right)=1$ , so
\[\dfrac{dy}{dx}=\dfrac{-b}{a}\]
Hence the correct answer is option (b).
Note: In this problem we may get stuck after finding \[\dfrac{dy}{dx}\] as this function is not in (x, y). So, we need to recheck how to get the value of $'t'$ from the given information and go further, i.e., \[x=a{{\cos }^{3}}t\]
By substituting \[x=\dfrac{a}{2\sqrt{2}},\]we get,
\[\dfrac{a}{2\sqrt{2}}=a{{\cos }^{3}}t\]
And find the value of $'t'$ .
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

Atomic Structure: Definition, Models, and Examples

