
If \[x=a{{\cos }^{3}}t,y=b{{\sin }^{3}}t\], then at the point \[\left( \dfrac{a}{2\sqrt{2}},\dfrac{a}{2\sqrt{2}} \right),\dfrac{dy}{dx}=\]
(a) $\dfrac{b}{a}$
(b) $-\dfrac{b}{a}$
(c) $\dfrac{a}{b}$
(d) $-\dfrac{a}{b}$
Answer
233.1k+ views
Hint:- Consider ‘x’ and ‘y’ separately, then differentiate them with respect to ‘t’ separately. Then apply the parametric form of derivation, i.e., \[\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}\]. Then substitute the value of the given point and find out the value of ‘t’ and solve further to obtain the desired result.
Complete step-by-step solution -
As per the given information, \[x=a{{\cos }^{3}}t,y=b{{\sin }^{3}}t.\]
For this first we will find \[\dfrac{dx}{dt},\dfrac{dy}{dt}.\]
So, deriving $'x'$ with respect to $'t'$, we get
\[\dfrac{dx}{dt}=\dfrac{d}{dt}(a{{\cos }^{3}}t)\]
Taking out the constant term, we get
\[\begin{align}
& \dfrac{dx}{dt}=a\dfrac{d}{dt}({{\cos }^{3}}t) \\
& \Rightarrow \dfrac{dx}{dt}=a(3{{\cos }^{2}}t)\dfrac{d}{dt}(\cos t) \\
\end{align}\]
We know derivative of $\cos x$ is $-\sin x$ , so we get
\[\begin{align}
& \dfrac{dx}{dt}=a\left( 3{{\cos }^{2}}t \right)(-\sin t) \\
& \Rightarrow \dfrac{dx}{dt}=-3a{{\cos }^{2}}t\sin t..........(i) \\
\end{align}\]
Now deriving $'y'$ with respect to $'t'$, we get
\[\dfrac{dy}{dt}=\dfrac{d}{dt}(b{{\sin }^{3}}t)\]
Taking out the constant term, we get
\[\begin{align}
& \dfrac{dy}{dt}=b\dfrac{d}{dt}(si{{n}^{3}}t) \\
& \Rightarrow \dfrac{dy}{dt}=b(3{{\sin }^{2}}t)\dfrac{d}{dt}(sint) \\
\end{align}\]
We know derivative of $\sin x$ is $\cos x$ , so we get
\[\begin{align}
& \dfrac{dy}{dt}=b\left( 3{{\sin }^{2}}t \right)(\cos t) \\
& \dfrac{dy}{dt}=3b{{\sin }^{2}}t\cos t..........(ii) \\
\end{align}\]
Now dividing equations (ii) by (i), we have
\[\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{3b{{\sin }^{2}}t\cos t}{-3a{{\cos }^{2}}t\sin t}\]
Cancelling like terms, we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{-b\sin t}{a\cos t}\]
But we know $\tan x=\dfrac{\sin x}{\cos x}$ , so above equation becomes
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{-b}{a}\tan t........(iii)\]
Now, let us find the value of $'t'$ at \[(x,y)=\left( \dfrac{a}{2\sqrt{2}},\dfrac{a}{2\sqrt{2}} \right)\].
As per the given information,
\[x=a{{\cos }^{3}}t\]
By substituting \[x=\dfrac{a}{2\sqrt{2}},\]we get,
\[\dfrac{a}{2\sqrt{2}}=a{{\cos }^{3}}t\]
\[\Rightarrow {{\cos }^{3}}(t)=\dfrac{1}{2\sqrt{2}}=\dfrac{1}{\sqrt{{{2}^{3}}}}\]
Taking cube root on both sides, we get
\[\Rightarrow \cos t=\dfrac{1}{\sqrt{2}}\]
We know $\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$ , so
\[\Rightarrow t=\dfrac{\pi }{4}\]
Now, substitute this value in \[\dfrac{dy}{dx}\], we get
\[\dfrac{dy}{dx}=-\dfrac{b}{a}\tan \left( \dfrac{\pi }{4} \right)\]
We know $\tan \left( \dfrac{\pi }{4} \right)=1$ , so
\[\dfrac{dy}{dx}=\dfrac{-b}{a}\]
Hence the correct answer is option (b).
Note: In this problem we may get stuck after finding \[\dfrac{dy}{dx}\] as this function is not in (x, y). So, we need to recheck how to get the value of $'t'$ from the given information and go further, i.e., \[x=a{{\cos }^{3}}t\]
By substituting \[x=\dfrac{a}{2\sqrt{2}},\]we get,
\[\dfrac{a}{2\sqrt{2}}=a{{\cos }^{3}}t\]
And find the value of $'t'$ .
Complete step-by-step solution -
As per the given information, \[x=a{{\cos }^{3}}t,y=b{{\sin }^{3}}t.\]
For this first we will find \[\dfrac{dx}{dt},\dfrac{dy}{dt}.\]
So, deriving $'x'$ with respect to $'t'$, we get
\[\dfrac{dx}{dt}=\dfrac{d}{dt}(a{{\cos }^{3}}t)\]
Taking out the constant term, we get
\[\begin{align}
& \dfrac{dx}{dt}=a\dfrac{d}{dt}({{\cos }^{3}}t) \\
& \Rightarrow \dfrac{dx}{dt}=a(3{{\cos }^{2}}t)\dfrac{d}{dt}(\cos t) \\
\end{align}\]
We know derivative of $\cos x$ is $-\sin x$ , so we get
\[\begin{align}
& \dfrac{dx}{dt}=a\left( 3{{\cos }^{2}}t \right)(-\sin t) \\
& \Rightarrow \dfrac{dx}{dt}=-3a{{\cos }^{2}}t\sin t..........(i) \\
\end{align}\]
Now deriving $'y'$ with respect to $'t'$, we get
\[\dfrac{dy}{dt}=\dfrac{d}{dt}(b{{\sin }^{3}}t)\]
Taking out the constant term, we get
\[\begin{align}
& \dfrac{dy}{dt}=b\dfrac{d}{dt}(si{{n}^{3}}t) \\
& \Rightarrow \dfrac{dy}{dt}=b(3{{\sin }^{2}}t)\dfrac{d}{dt}(sint) \\
\end{align}\]
We know derivative of $\sin x$ is $\cos x$ , so we get
\[\begin{align}
& \dfrac{dy}{dt}=b\left( 3{{\sin }^{2}}t \right)(\cos t) \\
& \dfrac{dy}{dt}=3b{{\sin }^{2}}t\cos t..........(ii) \\
\end{align}\]
Now dividing equations (ii) by (i), we have
\[\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{3b{{\sin }^{2}}t\cos t}{-3a{{\cos }^{2}}t\sin t}\]
Cancelling like terms, we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{-b\sin t}{a\cos t}\]
But we know $\tan x=\dfrac{\sin x}{\cos x}$ , so above equation becomes
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{-b}{a}\tan t........(iii)\]
Now, let us find the value of $'t'$ at \[(x,y)=\left( \dfrac{a}{2\sqrt{2}},\dfrac{a}{2\sqrt{2}} \right)\].
As per the given information,
\[x=a{{\cos }^{3}}t\]
By substituting \[x=\dfrac{a}{2\sqrt{2}},\]we get,
\[\dfrac{a}{2\sqrt{2}}=a{{\cos }^{3}}t\]
\[\Rightarrow {{\cos }^{3}}(t)=\dfrac{1}{2\sqrt{2}}=\dfrac{1}{\sqrt{{{2}^{3}}}}\]
Taking cube root on both sides, we get
\[\Rightarrow \cos t=\dfrac{1}{\sqrt{2}}\]
We know $\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$ , so
\[\Rightarrow t=\dfrac{\pi }{4}\]
Now, substitute this value in \[\dfrac{dy}{dx}\], we get
\[\dfrac{dy}{dx}=-\dfrac{b}{a}\tan \left( \dfrac{\pi }{4} \right)\]
We know $\tan \left( \dfrac{\pi }{4} \right)=1$ , so
\[\dfrac{dy}{dx}=\dfrac{-b}{a}\]
Hence the correct answer is option (b).
Note: In this problem we may get stuck after finding \[\dfrac{dy}{dx}\] as this function is not in (x, y). So, we need to recheck how to get the value of $'t'$ from the given information and go further, i.e., \[x=a{{\cos }^{3}}t\]
By substituting \[x=\dfrac{a}{2\sqrt{2}},\]we get,
\[\dfrac{a}{2\sqrt{2}}=a{{\cos }^{3}}t\]
And find the value of $'t'$ .
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

