
If we are given a determinant \[{{D}_{r}}=\left| \begin{matrix}
r & x & \dfrac{n\left( n+1 \right)}{2} \\
2r-1 & y & {{n}^{2}} \\
3r-2 & z & \dfrac{n\left( 3n-1 \right)}{2} \\
\end{matrix} \right|\], then prove that \[\sum\limits_{r=1}^{n}{{{D}_{r}}}=0\].
Answer
134.4k+ views
Hint: Perform row operations on the given determinant, \[{{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}\] and \[{{R}_{3}}\to {{R}_{3}}-3{{R}_{1}}\] to simplify \[{{D}_{r}}\]. Here, \[{{R}_{1}},{{R}_{2}}\] and \[{{R}_{3}}\] denotes first, second and third row respectively. Now, perform a column operation, \[{{C}_{1}}\to {{C}_{1}}-{{C}_{3}}\] and expand the given determinant. Take summation \[\sum\limits_{r=1}^{n}{}\] on both sides and consider n, x, y, z as constants and simplify the summation of \[{{D}_{r}}\]. Use the formula for sum of ‘n’ terms of an A.P. given as: - \[{{S}_{n}}=\dfrac{n}{2}\left( n+1 \right)\] and if k is a constant then \[\sum\limits_{r=1}^{n}{k}=nk\], to get the answer.
Complete step-by-step solution
Here, we have been provided with a determinant expression given as: -
\[\Rightarrow \] \[{{D}_{r}}=\left| \begin{matrix}
r & x & \dfrac{n\left( n+1 \right)}{2} \\
2r-1 & y & {{n}^{2}} \\
3r-2 & z & \dfrac{n\left( 3n-1 \right)}{2} \\
\end{matrix} \right|\]
We have to prove, \[\sum\limits_{r=1}^{n}{{{D}_{r}}}=0\].
Now, in the expression of determinant \[{{D}_{r}}\], we have 3 rows and 3 columns. Horizontal lines are rows and vertical lines are columns. We know that performing row and column operations does not change the value of determinant. Therefore, we have,
(i) Performing the operation, \[{{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}\] and \[{{R}_{3}}\to {{R}_{3}}-3{{R}_{1}}\] that means terms of \[~{{R}_{2}}\] is replaced with \[{{R}_{2}}-2{{R}_{1}}\] and \[{{R}_{3}}\] is replaced with \[{{R}_{3}}-3{{R}_{1}}\], we get,
\[\Rightarrow {{D}_{r}}=\left| \begin{matrix}
r & x & \dfrac{n\left( n+1 \right)}{2} \\
\left( 2r-1 \right)-2r & y-2x & {{n}^{2}}-2\left[ \dfrac{n\left( n+1 \right)}{2} \right] \\
\left( 3r-2 \right)-3r & z-3x & \dfrac{n\left( 3n-1 \right)}{2}-3\left[ \dfrac{n\left( n+1 \right)}{2} \right] \\
\end{matrix} \right|\]
\[\Rightarrow {{D}_{r}}=\left| \begin{matrix}
r & x & \dfrac{n\left( n+1 \right)}{2} \\
-1 & y-2x & -\dfrac{2n}{2} \\
-2 & z-3x & -\dfrac{4n}{2} \\
\end{matrix} \right|\]
Taking (-1) common from second and third row and ‘n’ common from column 3, we get,
\[\begin{align}
& \Rightarrow {{D}_{r}}=\left( -1 \right)\times \left( -1 \right)\times \left( n \right)\left| \begin{matrix}
r & x & \left( \dfrac{n+1}{2} \right) \\
1 & 2x-y & 1 \\
2 & 3x-z & 2 \\
\end{matrix} \right| \\
& \Rightarrow {{D}_{r}}=n\left| \begin{matrix}
r & x & \left( \dfrac{n+1}{2} \right) \\
1 & 2x-y & 1 \\
2 & 3x-z & 2 \\
\end{matrix} \right| \\
\end{align}\]
(ii) Performing the operation, \[{{C}_{1}}\to {{C}_{1}}-{{C}_{3}}\], that means terms of \[{{C}_{1}}\] is replaced with \[{{C}_{1}}-{{C}_{3}}\], we get,
\[\Rightarrow {{D}_{r}}=n\left| \begin{matrix}
r-\left( \dfrac{n+1}{2} \right) & x & \left( \dfrac{n+1}{2} \right) \\
0 & 2x-y & 1 \\
0 & 3x-z & 2 \\
\end{matrix} \right|\]
Now, expanding the determinant we get,
\[\begin{align}
& \Rightarrow {{D}_{r}}=n\left[ \left( r-\dfrac{n+1}{2} \right)\times \left\{ \left( 2x-y \right)\times 2-\left( 3x-z \right)\times 1 \right\}-x\times \left( 0\times 2-0\times 1 \right)+\left( \dfrac{n+1}{2} \right)\times \left( 0\times \left( 3x-z \right)-0\times \left( 2x-y \right) \right) \right] \\
& \Rightarrow {{D}_{r}}=n\left[ \left( r-\dfrac{n+1}{2} \right)\left\{ 4x-2y-3x+z \right\} \right] \\
& \Rightarrow {{D}_{r}}=n\left[ \left( r-\dfrac{n+1}{2} \right)\times \left\{ x-2y+z \right\} \right] \\
& \Rightarrow {{D}_{r}}=n\times \left( x-2y+z \right)\left( r-\dfrac{n+1}{2} \right) \\
\end{align}\]
Taking summation sign both sides, we get,
\[\Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=\sum\limits_{r=1}^{n}{n\times \left( x-2y+z \right)\left( r-\dfrac{n+1}{2} \right)}\]
Since, \[{{D}_{r}}\] is a function of r, therefore n, x, y and z can be considered as constant terms. So, taking these constant terms out of the summation sign, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \sum\limits_{r=1}^{n}{\left( r-\dfrac{n+1}{2} \right)} \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \sum\limits_{r=1}^{n}{r-\sum\limits_{r=1}^{n}{\left( \dfrac{n+1}{2} \right)}} \right] \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \left( 1+2+3+...+n \right)-\left( \dfrac{n+1}{2} \right)\sum\limits_{r=1}^{n}{1} \right] \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \left( 1+2+3+...+n \right)-\left( \dfrac{n+1}{2} \right)\times \left( 1+1+...ntimes \right) \right] \\
\end{align}\]
Here, 1 + 2 + 3 + …. + n are n terms in A.P. with common difference equal to 1. So, applying the formula sum of ‘n’ terms of an A.P. given as, \[{{S}_{n}}=\dfrac{n\left( n+1 \right)}{2}\], we get,
\[\Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \dfrac{n\left( n+1 \right)}{2}-\left( \dfrac{n+1}{2} \right)\times n \right]\]
Cancelling the like terms, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times 0 \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=0 \\
\end{align}\]
Hence, proved.
Note: One may note that we have not expanded the given determinant directly because we have to reduce the calculations. That is why row and column operations are performed. Also, you may note that we have considered n, x, y and z are constants. This is because \[{{D}_{r}}\] denotes this condition. You must remember properties of determinants to solve the above question.
Complete step-by-step solution
Here, we have been provided with a determinant expression given as: -
\[\Rightarrow \] \[{{D}_{r}}=\left| \begin{matrix}
r & x & \dfrac{n\left( n+1 \right)}{2} \\
2r-1 & y & {{n}^{2}} \\
3r-2 & z & \dfrac{n\left( 3n-1 \right)}{2} \\
\end{matrix} \right|\]
We have to prove, \[\sum\limits_{r=1}^{n}{{{D}_{r}}}=0\].
Now, in the expression of determinant \[{{D}_{r}}\], we have 3 rows and 3 columns. Horizontal lines are rows and vertical lines are columns. We know that performing row and column operations does not change the value of determinant. Therefore, we have,
(i) Performing the operation, \[{{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}\] and \[{{R}_{3}}\to {{R}_{3}}-3{{R}_{1}}\] that means terms of \[~{{R}_{2}}\] is replaced with \[{{R}_{2}}-2{{R}_{1}}\] and \[{{R}_{3}}\] is replaced with \[{{R}_{3}}-3{{R}_{1}}\], we get,
\[\Rightarrow {{D}_{r}}=\left| \begin{matrix}
r & x & \dfrac{n\left( n+1 \right)}{2} \\
\left( 2r-1 \right)-2r & y-2x & {{n}^{2}}-2\left[ \dfrac{n\left( n+1 \right)}{2} \right] \\
\left( 3r-2 \right)-3r & z-3x & \dfrac{n\left( 3n-1 \right)}{2}-3\left[ \dfrac{n\left( n+1 \right)}{2} \right] \\
\end{matrix} \right|\]
\[\Rightarrow {{D}_{r}}=\left| \begin{matrix}
r & x & \dfrac{n\left( n+1 \right)}{2} \\
-1 & y-2x & -\dfrac{2n}{2} \\
-2 & z-3x & -\dfrac{4n}{2} \\
\end{matrix} \right|\]
Taking (-1) common from second and third row and ‘n’ common from column 3, we get,
\[\begin{align}
& \Rightarrow {{D}_{r}}=\left( -1 \right)\times \left( -1 \right)\times \left( n \right)\left| \begin{matrix}
r & x & \left( \dfrac{n+1}{2} \right) \\
1 & 2x-y & 1 \\
2 & 3x-z & 2 \\
\end{matrix} \right| \\
& \Rightarrow {{D}_{r}}=n\left| \begin{matrix}
r & x & \left( \dfrac{n+1}{2} \right) \\
1 & 2x-y & 1 \\
2 & 3x-z & 2 \\
\end{matrix} \right| \\
\end{align}\]
(ii) Performing the operation, \[{{C}_{1}}\to {{C}_{1}}-{{C}_{3}}\], that means terms of \[{{C}_{1}}\] is replaced with \[{{C}_{1}}-{{C}_{3}}\], we get,
\[\Rightarrow {{D}_{r}}=n\left| \begin{matrix}
r-\left( \dfrac{n+1}{2} \right) & x & \left( \dfrac{n+1}{2} \right) \\
0 & 2x-y & 1 \\
0 & 3x-z & 2 \\
\end{matrix} \right|\]
Now, expanding the determinant we get,
\[\begin{align}
& \Rightarrow {{D}_{r}}=n\left[ \left( r-\dfrac{n+1}{2} \right)\times \left\{ \left( 2x-y \right)\times 2-\left( 3x-z \right)\times 1 \right\}-x\times \left( 0\times 2-0\times 1 \right)+\left( \dfrac{n+1}{2} \right)\times \left( 0\times \left( 3x-z \right)-0\times \left( 2x-y \right) \right) \right] \\
& \Rightarrow {{D}_{r}}=n\left[ \left( r-\dfrac{n+1}{2} \right)\left\{ 4x-2y-3x+z \right\} \right] \\
& \Rightarrow {{D}_{r}}=n\left[ \left( r-\dfrac{n+1}{2} \right)\times \left\{ x-2y+z \right\} \right] \\
& \Rightarrow {{D}_{r}}=n\times \left( x-2y+z \right)\left( r-\dfrac{n+1}{2} \right) \\
\end{align}\]
Taking summation sign both sides, we get,
\[\Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=\sum\limits_{r=1}^{n}{n\times \left( x-2y+z \right)\left( r-\dfrac{n+1}{2} \right)}\]
Since, \[{{D}_{r}}\] is a function of r, therefore n, x, y and z can be considered as constant terms. So, taking these constant terms out of the summation sign, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \sum\limits_{r=1}^{n}{\left( r-\dfrac{n+1}{2} \right)} \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \sum\limits_{r=1}^{n}{r-\sum\limits_{r=1}^{n}{\left( \dfrac{n+1}{2} \right)}} \right] \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \left( 1+2+3+...+n \right)-\left( \dfrac{n+1}{2} \right)\sum\limits_{r=1}^{n}{1} \right] \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \left( 1+2+3+...+n \right)-\left( \dfrac{n+1}{2} \right)\times \left( 1+1+...ntimes \right) \right] \\
\end{align}\]
Here, 1 + 2 + 3 + …. + n are n terms in A.P. with common difference equal to 1. So, applying the formula sum of ‘n’ terms of an A.P. given as, \[{{S}_{n}}=\dfrac{n\left( n+1 \right)}{2}\], we get,
\[\Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \dfrac{n\left( n+1 \right)}{2}-\left( \dfrac{n+1}{2} \right)\times n \right]\]
Cancelling the like terms, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times 0 \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=0 \\
\end{align}\]
Hence, proved.
Note: One may note that we have not expanded the given determinant directly because we have to reduce the calculations. That is why row and column operations are performed. Also, you may note that we have considered n, x, y and z are constants. This is because \[{{D}_{r}}\] denotes this condition. You must remember properties of determinants to solve the above question.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 13 Statistics
