
If \(\vec a = \hat i - \hat j + \hat k\),\(\vec b = \hat i + 2\hat j - \hat k\) and \(\vec c = 3\hat i + p\hat j + 5\hat k\) are coplanar, then p=? [RPET \(1985,86,88,91\)].
A) \( - 6\).
B) \( - 2\)
C) \(2\)
D) \(6\)
Answer
164.4k+ views
Hint: In this question we have to use the concept of co-planarity. Three vectors are said to be coplanar when they all are present in the same plane or we can say that all those vectors which are parallel to the same plane are coplanar. In order to find whether vectors are coplanar or not we have to find a scalar triple product of three vectors. If the value of the scalar triple product is zero then we can say that three given vectors are coplanar.
Formula Used:Scalar triple product of vectors \( = \vec a.\left( {\vec b \times \vec c} \right)\)
Where \(\vec a,\vec b\)and \(\vec c\)are three given vectors.
\(\vec a.\left( {\vec b \times \vec c} \right) = \left| a \right|\left| {\left( {\vec b \times \vec c} \right)} \right|\cos \left( \theta \right)\)
Where is the angle between \(\vec a\)and \(\left( {\vec b \times \vec c} \right)\)
\(\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\)
\( = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\)
\( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\)
Complete step by step solution:Given: Three vectors a, b and c are coplanar
I.e. \(\vec a.\left( {\vec b \times \vec c} \right) = 0\)
Where,
\(\vec a = \hat i - \hat j + \hat k\)
\(\vec b = \hat i + 2\hat j - \hat k\)
\(\vec c = 3\hat i + p\hat j + 5\hat k\)
\({a_1} = 1,\;{a_{2 = }} - 1,\;{a_3} = 1\)
\({b_1} = 1,\;{b_2} = 2,{b_3} = - 1\)
\({c_1} = 3,\;{c_2} = p,\;{c_3} = 5\)
\(\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\)
\( = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\)
\( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\)
\(\vec a.\left( {\vec b \times \vec c} \right) = 0\)
\(1\left( {2 \times 5 - \left( { - 1} \right) \times p} \right) + 1\left( {1 \times 5 - \left( { - 1} \right) \times 3} \right) + 1\left( {1 \times p - 2 \times 3} \right) = 0\)
\(\left( {10 + p} \right) + \left( {5 + 3} \right) + \left( {p - 6} \right) = 0\)
\(10 + p + 8 + p - 6 = 0\)
\(2p + 12 = 0\)
\(2p = - 12\)
\(p = - {\bf{6}}\)
Option ‘A’ is correct
Note: Here in this question we have to find the value of p. In order to find the value of p we must know the concept of coplanarity. Scalar triple product formula is used to find the required value. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as \[\left[ {a{\rm{ }}b{\rm{ }}c{\rm{ }}} \right].\]
The resultant scalar triple product is always scalar. If the scalar triple product is zero then we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Formula Used:Scalar triple product of vectors \( = \vec a.\left( {\vec b \times \vec c} \right)\)
Where \(\vec a,\vec b\)and \(\vec c\)are three given vectors.
\(\vec a.\left( {\vec b \times \vec c} \right) = \left| a \right|\left| {\left( {\vec b \times \vec c} \right)} \right|\cos \left( \theta \right)\)
Where is the angle between \(\vec a\)and \(\left( {\vec b \times \vec c} \right)\)
\(\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\)
\( = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\)
\( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\)
Complete step by step solution:Given: Three vectors a, b and c are coplanar
I.e. \(\vec a.\left( {\vec b \times \vec c} \right) = 0\)
Where,
\(\vec a = \hat i - \hat j + \hat k\)
\(\vec b = \hat i + 2\hat j - \hat k\)
\(\vec c = 3\hat i + p\hat j + 5\hat k\)
\({a_1} = 1,\;{a_{2 = }} - 1,\;{a_3} = 1\)
\({b_1} = 1,\;{b_2} = 2,{b_3} = - 1\)
\({c_1} = 3,\;{c_2} = p,\;{c_3} = 5\)
\(\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\)
\( = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\)
\( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\)
\(\vec a.\left( {\vec b \times \vec c} \right) = 0\)
\(1\left( {2 \times 5 - \left( { - 1} \right) \times p} \right) + 1\left( {1 \times 5 - \left( { - 1} \right) \times 3} \right) + 1\left( {1 \times p - 2 \times 3} \right) = 0\)
\(\left( {10 + p} \right) + \left( {5 + 3} \right) + \left( {p - 6} \right) = 0\)
\(10 + p + 8 + p - 6 = 0\)
\(2p + 12 = 0\)
\(2p = - 12\)
\(p = - {\bf{6}}\)
Option ‘A’ is correct
Note: Here in this question we have to find the value of p. In order to find the value of p we must know the concept of coplanarity. Scalar triple product formula is used to find the required value. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as \[\left[ {a{\rm{ }}b{\rm{ }}c{\rm{ }}} \right].\]
The resultant scalar triple product is always scalar. If the scalar triple product is zero then we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE
