
If \(\vec a = \hat i - \hat j + \hat k\),\(\vec b = \hat i + 2\hat j - \hat k\) and \(\vec c = 3\hat i + p\hat j + 5\hat k\) are coplanar, then p=? [RPET \(1985,86,88,91\)].
A) \( - 6\).
B) \( - 2\)
C) \(2\)
D) \(6\)
Answer
219.3k+ views
Hint: In this question we have to use the concept of co-planarity. Three vectors are said to be coplanar when they all are present in the same plane or we can say that all those vectors which are parallel to the same plane are coplanar. In order to find whether vectors are coplanar or not we have to find a scalar triple product of three vectors. If the value of the scalar triple product is zero then we can say that three given vectors are coplanar.
Formula Used:Scalar triple product of vectors \( = \vec a.\left( {\vec b \times \vec c} \right)\)
Where \(\vec a,\vec b\)and \(\vec c\)are three given vectors.
\(\vec a.\left( {\vec b \times \vec c} \right) = \left| a \right|\left| {\left( {\vec b \times \vec c} \right)} \right|\cos \left( \theta \right)\)
Where is the angle between \(\vec a\)and \(\left( {\vec b \times \vec c} \right)\)
\(\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\)
\( = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\)
\( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\)
Complete step by step solution:Given: Three vectors a, b and c are coplanar
I.e. \(\vec a.\left( {\vec b \times \vec c} \right) = 0\)
Where,
\(\vec a = \hat i - \hat j + \hat k\)
\(\vec b = \hat i + 2\hat j - \hat k\)
\(\vec c = 3\hat i + p\hat j + 5\hat k\)
\({a_1} = 1,\;{a_{2 = }} - 1,\;{a_3} = 1\)
\({b_1} = 1,\;{b_2} = 2,{b_3} = - 1\)
\({c_1} = 3,\;{c_2} = p,\;{c_3} = 5\)
\(\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\)
\( = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\)
\( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\)
\(\vec a.\left( {\vec b \times \vec c} \right) = 0\)
\(1\left( {2 \times 5 - \left( { - 1} \right) \times p} \right) + 1\left( {1 \times 5 - \left( { - 1} \right) \times 3} \right) + 1\left( {1 \times p - 2 \times 3} \right) = 0\)
\(\left( {10 + p} \right) + \left( {5 + 3} \right) + \left( {p - 6} \right) = 0\)
\(10 + p + 8 + p - 6 = 0\)
\(2p + 12 = 0\)
\(2p = - 12\)
\(p = - {\bf{6}}\)
Option ‘A’ is correct
Note: Here in this question we have to find the value of p. In order to find the value of p we must know the concept of coplanarity. Scalar triple product formula is used to find the required value. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as \[\left[ {a{\rm{ }}b{\rm{ }}c{\rm{ }}} \right].\]
The resultant scalar triple product is always scalar. If the scalar triple product is zero then we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Formula Used:Scalar triple product of vectors \( = \vec a.\left( {\vec b \times \vec c} \right)\)
Where \(\vec a,\vec b\)and \(\vec c\)are three given vectors.
\(\vec a.\left( {\vec b \times \vec c} \right) = \left| a \right|\left| {\left( {\vec b \times \vec c} \right)} \right|\cos \left( \theta \right)\)
Where is the angle between \(\vec a\)and \(\left( {\vec b \times \vec c} \right)\)
\(\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\)
\( = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\)
\( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\)
Complete step by step solution:Given: Three vectors a, b and c are coplanar
I.e. \(\vec a.\left( {\vec b \times \vec c} \right) = 0\)
Where,
\(\vec a = \hat i - \hat j + \hat k\)
\(\vec b = \hat i + 2\hat j - \hat k\)
\(\vec c = 3\hat i + p\hat j + 5\hat k\)
\({a_1} = 1,\;{a_{2 = }} - 1,\;{a_3} = 1\)
\({b_1} = 1,\;{b_2} = 2,{b_3} = - 1\)
\({c_1} = 3,\;{c_2} = p,\;{c_3} = 5\)
\(\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\)
\( = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\)
\( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\)
\(\vec a.\left( {\vec b \times \vec c} \right) = 0\)
\(1\left( {2 \times 5 - \left( { - 1} \right) \times p} \right) + 1\left( {1 \times 5 - \left( { - 1} \right) \times 3} \right) + 1\left( {1 \times p - 2 \times 3} \right) = 0\)
\(\left( {10 + p} \right) + \left( {5 + 3} \right) + \left( {p - 6} \right) = 0\)
\(10 + p + 8 + p - 6 = 0\)
\(2p + 12 = 0\)
\(2p = - 12\)
\(p = - {\bf{6}}\)
Option ‘A’ is correct
Note: Here in this question we have to find the value of p. In order to find the value of p we must know the concept of coplanarity. Scalar triple product formula is used to find the required value. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as \[\left[ {a{\rm{ }}b{\rm{ }}c{\rm{ }}} \right].\]
The resultant scalar triple product is always scalar. If the scalar triple product is zero then we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

