
If \(\vec a = \hat i - \hat j + \hat k\),\(\vec b = \hat i + 2\hat j - \hat k\) and \(\vec c = 3\hat i + p\hat j + 5\hat k\) are coplanar, then p=? [RPET \(1985,86,88,91\)].
A) \( - 6\).
B) \( - 2\)
C) \(2\)
D) \(6\)
Answer
232.8k+ views
Hint: In this question we have to use the concept of co-planarity. Three vectors are said to be coplanar when they all are present in the same plane or we can say that all those vectors which are parallel to the same plane are coplanar. In order to find whether vectors are coplanar or not we have to find a scalar triple product of three vectors. If the value of the scalar triple product is zero then we can say that three given vectors are coplanar.
Formula Used:Scalar triple product of vectors \( = \vec a.\left( {\vec b \times \vec c} \right)\)
Where \(\vec a,\vec b\)and \(\vec c\)are three given vectors.
\(\vec a.\left( {\vec b \times \vec c} \right) = \left| a \right|\left| {\left( {\vec b \times \vec c} \right)} \right|\cos \left( \theta \right)\)
Where is the angle between \(\vec a\)and \(\left( {\vec b \times \vec c} \right)\)
\(\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\)
\( = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\)
\( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\)
Complete step by step solution:Given: Three vectors a, b and c are coplanar
I.e. \(\vec a.\left( {\vec b \times \vec c} \right) = 0\)
Where,
\(\vec a = \hat i - \hat j + \hat k\)
\(\vec b = \hat i + 2\hat j - \hat k\)
\(\vec c = 3\hat i + p\hat j + 5\hat k\)
\({a_1} = 1,\;{a_{2 = }} - 1,\;{a_3} = 1\)
\({b_1} = 1,\;{b_2} = 2,{b_3} = - 1\)
\({c_1} = 3,\;{c_2} = p,\;{c_3} = 5\)
\(\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\)
\( = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\)
\( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\)
\(\vec a.\left( {\vec b \times \vec c} \right) = 0\)
\(1\left( {2 \times 5 - \left( { - 1} \right) \times p} \right) + 1\left( {1 \times 5 - \left( { - 1} \right) \times 3} \right) + 1\left( {1 \times p - 2 \times 3} \right) = 0\)
\(\left( {10 + p} \right) + \left( {5 + 3} \right) + \left( {p - 6} \right) = 0\)
\(10 + p + 8 + p - 6 = 0\)
\(2p + 12 = 0\)
\(2p = - 12\)
\(p = - {\bf{6}}\)
Option ‘A’ is correct
Note: Here in this question we have to find the value of p. In order to find the value of p we must know the concept of coplanarity. Scalar triple product formula is used to find the required value. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as \[\left[ {a{\rm{ }}b{\rm{ }}c{\rm{ }}} \right].\]
The resultant scalar triple product is always scalar. If the scalar triple product is zero then we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Formula Used:Scalar triple product of vectors \( = \vec a.\left( {\vec b \times \vec c} \right)\)
Where \(\vec a,\vec b\)and \(\vec c\)are three given vectors.
\(\vec a.\left( {\vec b \times \vec c} \right) = \left| a \right|\left| {\left( {\vec b \times \vec c} \right)} \right|\cos \left( \theta \right)\)
Where is the angle between \(\vec a\)and \(\left( {\vec b \times \vec c} \right)\)
\(\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\)
\( = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\)
\( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\)
Complete step by step solution:Given: Three vectors a, b and c are coplanar
I.e. \(\vec a.\left( {\vec b \times \vec c} \right) = 0\)
Where,
\(\vec a = \hat i - \hat j + \hat k\)
\(\vec b = \hat i + 2\hat j - \hat k\)
\(\vec c = 3\hat i + p\hat j + 5\hat k\)
\({a_1} = 1,\;{a_{2 = }} - 1,\;{a_3} = 1\)
\({b_1} = 1,\;{b_2} = 2,{b_3} = - 1\)
\({c_1} = 3,\;{c_2} = p,\;{c_3} = 5\)
\(\vec a.\left( {\vec b \times \vec c} \right) = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}} \right|\)
\( = \left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k} \right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}} \right)\hat i - \left( {{b_1}{c_3} - {b_3}{c_1}} \right)\hat j + \left( {{b_1}{c_2} - {b_2}{c_1}} \right)\hat k} \right\}\)
\( = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)\)
\(\vec a.\left( {\vec b \times \vec c} \right) = 0\)
\(1\left( {2 \times 5 - \left( { - 1} \right) \times p} \right) + 1\left( {1 \times 5 - \left( { - 1} \right) \times 3} \right) + 1\left( {1 \times p - 2 \times 3} \right) = 0\)
\(\left( {10 + p} \right) + \left( {5 + 3} \right) + \left( {p - 6} \right) = 0\)
\(10 + p + 8 + p - 6 = 0\)
\(2p + 12 = 0\)
\(2p = - 12\)
\(p = - {\bf{6}}\)
Option ‘A’ is correct
Note: Here in this question we have to find the value of p. In order to find the value of p we must know the concept of coplanarity. Scalar triple product formula is used to find the required value. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as \[\left[ {a{\rm{ }}b{\rm{ }}c{\rm{ }}} \right].\]
The resultant scalar triple product is always scalar. If the scalar triple product is zero then we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

