
If three coterminous edges of a parallelopiped are represented by\[\overrightarrow{a}-\overrightarrow{b},\overrightarrow{b}-\overrightarrow{c},\overrightarrow{c}-\overrightarrow{a}\]. Then its volume is
A. \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
B. \[2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
C. \[{{[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]}^{2}}\]
D. \[0\]
Answer
232.8k+ views
Hint: In this question, we are to find the volume. Here, the dot and cross products of vectors are applied to find the required volume. The dot product is said to be a scalar product and the cross product is said to be a skew product or vector product. By using appropriate formulae, the required vector product is calculated.
Formula Used:The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}-{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}-{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}-{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, we can use this triple product for finding the volume of the parallelopiped with the coterminous edges represented by \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\].
Thus,
Volume \[V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
In vector triple product is cross and dot products are interchangeable. I.e.,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}\]
Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Complete step by step solution:It is given that,
The coterminous edges of a parallelopiped are \[\overrightarrow{a}-\overrightarrow{b},\overrightarrow{b}-\overrightarrow{c},\overrightarrow{c}-\overrightarrow{a}\]
Then, its volume is calculated by,
\[V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
On substituting the given edges, we get
\[V=[\overrightarrow{a}-\overrightarrow{b}\text{ }\overrightarrow{b}-\overrightarrow{c}\text{ }\overrightarrow{c}-\overrightarrow{a}]\]
\[\begin{align}
& \Rightarrow V=(\overrightarrow{a}\times \overrightarrow{b})\cdot \overrightarrow{c} \\
& \text{ }=(\overrightarrow{a}-\overrightarrow{b})\times (\overrightarrow{b}-\overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
& \text{ }=(\overrightarrow{a}\times \overrightarrow{b}-\overrightarrow{a}\times \overrightarrow{c}-\overrightarrow{b}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
& \text{ }=(\overrightarrow{a}\times \overrightarrow{b}-\overrightarrow{a}\times \overrightarrow{c}-0+\overrightarrow{b}\times \overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
\end{align}\]
\[\begin{align}
& =(\overrightarrow{a}\times \overrightarrow{b}-\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}\times \overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
& =(\overrightarrow{a}\times \overrightarrow{b})\cdot \overrightarrow{c}-(\overrightarrow{a}\times \overrightarrow{c})\cdot \overrightarrow{c}+(\overrightarrow{b}\times \overrightarrow{c})\cdot \overrightarrow{c}-(\overrightarrow{a}\times \overrightarrow{b})\cdot \overrightarrow{a}+(\overrightarrow{a}\times \overrightarrow{c})\cdot \overrightarrow{a}-(\overrightarrow{b}\times \overrightarrow{c})\cdot \overrightarrow{a} \\
& =[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]-[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]-[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& =[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]-[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
\end{align}\]
\[\begin{align}
& =[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]-[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
& =0 \\
\end{align}\]
Option ‘D’ is correct
Note: Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulae used for solving the given vector. By applying appropriate vector products, the given vector equation is evaluated.
Formula Used:The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}-{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}-{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}-{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, we can use this triple product for finding the volume of the parallelopiped with the coterminous edges represented by \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\].
Thus,
Volume \[V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
In vector triple product is cross and dot products are interchangeable. I.e.,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}\]
Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Complete step by step solution:It is given that,
The coterminous edges of a parallelopiped are \[\overrightarrow{a}-\overrightarrow{b},\overrightarrow{b}-\overrightarrow{c},\overrightarrow{c}-\overrightarrow{a}\]
Then, its volume is calculated by,
\[V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
On substituting the given edges, we get
\[V=[\overrightarrow{a}-\overrightarrow{b}\text{ }\overrightarrow{b}-\overrightarrow{c}\text{ }\overrightarrow{c}-\overrightarrow{a}]\]
\[\begin{align}
& \Rightarrow V=(\overrightarrow{a}\times \overrightarrow{b})\cdot \overrightarrow{c} \\
& \text{ }=(\overrightarrow{a}-\overrightarrow{b})\times (\overrightarrow{b}-\overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
& \text{ }=(\overrightarrow{a}\times \overrightarrow{b}-\overrightarrow{a}\times \overrightarrow{c}-\overrightarrow{b}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
& \text{ }=(\overrightarrow{a}\times \overrightarrow{b}-\overrightarrow{a}\times \overrightarrow{c}-0+\overrightarrow{b}\times \overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
\end{align}\]
\[\begin{align}
& =(\overrightarrow{a}\times \overrightarrow{b}-\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}\times \overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
& =(\overrightarrow{a}\times \overrightarrow{b})\cdot \overrightarrow{c}-(\overrightarrow{a}\times \overrightarrow{c})\cdot \overrightarrow{c}+(\overrightarrow{b}\times \overrightarrow{c})\cdot \overrightarrow{c}-(\overrightarrow{a}\times \overrightarrow{b})\cdot \overrightarrow{a}+(\overrightarrow{a}\times \overrightarrow{c})\cdot \overrightarrow{a}-(\overrightarrow{b}\times \overrightarrow{c})\cdot \overrightarrow{a} \\
& =[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]-[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]-[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& =[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]-[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
\end{align}\]
\[\begin{align}
& =[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]-[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
& =0 \\
\end{align}\]
Option ‘D’ is correct
Note: Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulae used for solving the given vector. By applying appropriate vector products, the given vector equation is evaluated.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

