
If three coterminous edges of a parallelopiped are represented by\[\overrightarrow{a}-\overrightarrow{b},\overrightarrow{b}-\overrightarrow{c},\overrightarrow{c}-\overrightarrow{a}\]. Then its volume is
A. \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
B. \[2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
C. \[{{[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]}^{2}}\]
D. \[0\]
Answer
163.8k+ views
Hint: In this question, we are to find the volume. Here, the dot and cross products of vectors are applied to find the required volume. The dot product is said to be a scalar product and the cross product is said to be a skew product or vector product. By using appropriate formulae, the required vector product is calculated.
Formula Used:The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}-{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}-{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}-{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, we can use this triple product for finding the volume of the parallelopiped with the coterminous edges represented by \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\].
Thus,
Volume \[V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
In vector triple product is cross and dot products are interchangeable. I.e.,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}\]
Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Complete step by step solution:It is given that,
The coterminous edges of a parallelopiped are \[\overrightarrow{a}-\overrightarrow{b},\overrightarrow{b}-\overrightarrow{c},\overrightarrow{c}-\overrightarrow{a}\]
Then, its volume is calculated by,
\[V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
On substituting the given edges, we get
\[V=[\overrightarrow{a}-\overrightarrow{b}\text{ }\overrightarrow{b}-\overrightarrow{c}\text{ }\overrightarrow{c}-\overrightarrow{a}]\]
\[\begin{align}
& \Rightarrow V=(\overrightarrow{a}\times \overrightarrow{b})\cdot \overrightarrow{c} \\
& \text{ }=(\overrightarrow{a}-\overrightarrow{b})\times (\overrightarrow{b}-\overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
& \text{ }=(\overrightarrow{a}\times \overrightarrow{b}-\overrightarrow{a}\times \overrightarrow{c}-\overrightarrow{b}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
& \text{ }=(\overrightarrow{a}\times \overrightarrow{b}-\overrightarrow{a}\times \overrightarrow{c}-0+\overrightarrow{b}\times \overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
\end{align}\]
\[\begin{align}
& =(\overrightarrow{a}\times \overrightarrow{b}-\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}\times \overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
& =(\overrightarrow{a}\times \overrightarrow{b})\cdot \overrightarrow{c}-(\overrightarrow{a}\times \overrightarrow{c})\cdot \overrightarrow{c}+(\overrightarrow{b}\times \overrightarrow{c})\cdot \overrightarrow{c}-(\overrightarrow{a}\times \overrightarrow{b})\cdot \overrightarrow{a}+(\overrightarrow{a}\times \overrightarrow{c})\cdot \overrightarrow{a}-(\overrightarrow{b}\times \overrightarrow{c})\cdot \overrightarrow{a} \\
& =[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]-[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]-[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& =[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]-[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
\end{align}\]
\[\begin{align}
& =[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]-[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
& =0 \\
\end{align}\]
Option ‘D’ is correct
Note: Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulae used for solving the given vector. By applying appropriate vector products, the given vector equation is evaluated.
Formula Used:The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}-{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}-{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}-{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, we can use this triple product for finding the volume of the parallelopiped with the coterminous edges represented by \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\].
Thus,
Volume \[V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
In vector triple product is cross and dot products are interchangeable. I.e.,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}\]
Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Complete step by step solution:It is given that,
The coterminous edges of a parallelopiped are \[\overrightarrow{a}-\overrightarrow{b},\overrightarrow{b}-\overrightarrow{c},\overrightarrow{c}-\overrightarrow{a}\]
Then, its volume is calculated by,
\[V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
On substituting the given edges, we get
\[V=[\overrightarrow{a}-\overrightarrow{b}\text{ }\overrightarrow{b}-\overrightarrow{c}\text{ }\overrightarrow{c}-\overrightarrow{a}]\]
\[\begin{align}
& \Rightarrow V=(\overrightarrow{a}\times \overrightarrow{b})\cdot \overrightarrow{c} \\
& \text{ }=(\overrightarrow{a}-\overrightarrow{b})\times (\overrightarrow{b}-\overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
& \text{ }=(\overrightarrow{a}\times \overrightarrow{b}-\overrightarrow{a}\times \overrightarrow{c}-\overrightarrow{b}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
& \text{ }=(\overrightarrow{a}\times \overrightarrow{b}-\overrightarrow{a}\times \overrightarrow{c}-0+\overrightarrow{b}\times \overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
\end{align}\]
\[\begin{align}
& =(\overrightarrow{a}\times \overrightarrow{b}-\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}\times \overrightarrow{c})\cdot (\overrightarrow{c}-\overrightarrow{a}) \\
& =(\overrightarrow{a}\times \overrightarrow{b})\cdot \overrightarrow{c}-(\overrightarrow{a}\times \overrightarrow{c})\cdot \overrightarrow{c}+(\overrightarrow{b}\times \overrightarrow{c})\cdot \overrightarrow{c}-(\overrightarrow{a}\times \overrightarrow{b})\cdot \overrightarrow{a}+(\overrightarrow{a}\times \overrightarrow{c})\cdot \overrightarrow{a}-(\overrightarrow{b}\times \overrightarrow{c})\cdot \overrightarrow{a} \\
& =[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]-[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]-[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& =[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]-[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
\end{align}\]
\[\begin{align}
& =[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]-[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
& =0 \\
\end{align}\]
Option ‘D’ is correct
Note: Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulae used for solving the given vector. By applying appropriate vector products, the given vector equation is evaluated.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions
