
If the sides of a triangle are p, q and \[\sqrt {{p^2} + pq + {q^2}} \], then the biggest angle is
A. \[\pi /2\]
B. \[2\pi /3\]
C. \[5\pi /4\]
D. \[7\pi /4\]
E. \[5\pi /3\]
Answer
161.4k+ views
Hint: To get the biggest angle in the given triangle, we shall apply the triangle inequality theorem. The greatest sides will be found, and the angle opposite the biggest side will be the maximum angle of that triangle.
FORMULA USED:
\[\cos = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\]
Complete step by step solution: Given that the triangle has three sides p,q and \[\sqrt {{p^2} + pq + {q^2}} \].
The largest side of the triangle is considered as \[\sqrt {{p^2} + pq + {q^2}} \]
Let the largest side of the triangle’s angle be \[\theta \]
Then, the equation becomes,
\[\cos \theta = \dfrac{{{p^2} + {q^2} - {p^2} - pq - {q^2}}}{{2pq}}\]
Then, which is equal to
\[ - \dfrac{1}{2} = \cos (\dfrac{{2\pi }}{3})\]
Hence, the angle of the triangle is,
\[\theta = \dfrac{{2\pi }}{3}\].
So, Option ‘A’ is correct
Note: The "largest" angle in a triangle is the angle created by the triangle's sides, and it may be determined using the formula.
Each of the smaller angles can be added up to find a larger angle. The largest angle in this equation would be \[180^\circ - 90^\circ \], or \[135.5\] degrees, because \[{p^2} + pq + {q^2} = 180^\circ .\]
FORMULA USED:
\[\cos = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\]
Complete step by step solution: Given that the triangle has three sides p,q and \[\sqrt {{p^2} + pq + {q^2}} \].
The largest side of the triangle is considered as \[\sqrt {{p^2} + pq + {q^2}} \]
Let the largest side of the triangle’s angle be \[\theta \]
Then, the equation becomes,
\[\cos \theta = \dfrac{{{p^2} + {q^2} - {p^2} - pq - {q^2}}}{{2pq}}\]
Then, which is equal to
\[ - \dfrac{1}{2} = \cos (\dfrac{{2\pi }}{3})\]
Hence, the angle of the triangle is,
\[\theta = \dfrac{{2\pi }}{3}\].
So, Option ‘A’ is correct
Note: The "largest" angle in a triangle is the angle created by the triangle's sides, and it may be determined using the formula.
Each of the smaller angles can be added up to find a larger angle. The largest angle in this equation would be \[180^\circ - 90^\circ \], or \[135.5\] degrees, because \[{p^2} + pq + {q^2} = 180^\circ .\]
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
