
If the points whose position, vectors are $3i - 2j - k,\;2i + 3j - 4k,\; - i + j + 2k$ and $4i + 5j +\lambda k$ lie on a plane, then\[\lambda = ?\] [IIT$1986$; Pb. CET$2003$].
- A. $\dfrac{{ - 146}}{{17}}$
B. $\dfrac{{146}}{{17}}$
C. $\dfrac{{ - 17}}{{146}}$
D. $\dfrac{{17}}{{146}}$
- A. $\dfrac{{ - 146}}{{17}}$
Answer
162.9k+ views
Hint: In this question we have to use the concept of coplanarity. Three vectors are said to be coplanar when they all are present in the same plane or we can say that all those vectors which can be parallel to the single plane are coplanar. In order to find whether vectors are coplanar or not we have to find a scalar triple product of three vectors. If the value of the scalar triple product is zero then we can say that three given vectors are coplanar.
Formula used: Scalar triple product of vectors$ =\vec a{\rm{.}}\left( {\vec b\times\vec c}\right)$
Where $\vec a$,$\vec b$ and $\vec c$ are three given vectors.
$\vec a.\left( {\vec b\times\vec c}\right) =\left| a\right|\left| {\left( {\vec b\times\vec c}\right)}\right|\cos\left(\theta \right)$
Where $\theta$ is the angle between $\vec a$ and $\left( {\vec b\times\vec c}\right)$
$\vec a.\left( {\vec b\times\vec c}\right) =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}}\right|$
$ =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right){\rm{.}}\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}}\right)\hat i -\left( {{b_1}{c_3} - {b_3}{c_1}}\right)\hat j +\left( {{b_1}{c_2} - {b_2}{c_1}}\right)\hat k}\right\}$
$ = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}}\right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}}\right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}}\right)$
Complete step by step solution: Given: Four position vectors lie in the same plane.
Position vectors are :
$\overrightarrow {OA} = 3\hat I - 2\hat J -\hat K$
$\overrightarrow {OB} = 2\hat I + 3\hat J - 4\hat K$
$\overrightarrow {OC} =\; -\hat I +\hat J + 2\hat K$
$\overrightarrow {OD} = 4\hat I + 5\hat J +\lambda\hat K$
$\vec a =\overrightarrow {AB} =\overrightarrow {OB} -\overrightarrow {OA} = -\hat i + 5\hat j - 3\hat k$
$\vec b =\overrightarrow {AC} =\overrightarrow {OC} -\overrightarrow {OA}\; = - 4\hat i + 3\hat j + 3\hat k$
$\vec c =\overrightarrow {AD} =\overrightarrow {OD} -\overrightarrow {OA} =\hat i + 7\hat j +\left( {\lambda + 1}\right)\hat k$
${a_1}= - 1,\;{a_2} = 5,{a_3} = - 3$
${b_1}= - 4,{b_2} = 3,\;{b_3} = 3$
${c_1}= 1,\;{c_2} = 7,\;{c_3} =\lambda + 1$
Since the points are coplanar therefore we take the scalar triple product of three vectors.
$\vec a.\left( {\vec b\times\vec c}\right) =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}}\right|$
$ =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}}\right)\hat i -\left( {{b_1}{c_3} - {b_3}{c_1}}\right)\hat j +\left( {{b_1}{c_2} - {b_2}{c_1}}\right)\hat k}\right\}$
$ = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}}\right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}}\right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}}\right)$
Now for coplanar vectors
$\vec a{\rm{.}}\left( {\vec b\times\vec c}\right) = 0$
$\vec a.\left( {\vec b\times\vec c}\right) = - 1\left( {3\times\left( {\lambda + 1}\right) - 3\times 7}\right) - 5\left( { - 4\times\left( {\lambda + 1}\right) - 3\times 1}\right) - 3\left( { - 4\times 7 - 3\times 1}\right) = 0$
$ - 3\lambda - 3 + 21 - 5\left( { - 4\lambda - 4 - 3}\right) - 3\left( { - 28 - 3}\right) = 0$
$\;\; - 3\lambda - 3 + 21 + 20\lambda + 35 + 84 + 9 = 0$
$\;\;17\lambda + 146 = 0$
$\;\;\lambda =\dfrac{{ - 146}}{{17}}$
Thus, Option (A) is correct.
Note: Here question asked to find the value of unknown variable .In order to find the value of, we must know the concept of coplanarity. Scalar triple product formula is used to find the required value. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as .
The resultant scalar triple product is always scalar.Whenever we get the value of a scalar triple product as zero we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Formula used: Scalar triple product of vectors$ =\vec a{\rm{.}}\left( {\vec b\times\vec c}\right)$
Where $\vec a$,$\vec b$ and $\vec c$ are three given vectors.
$\vec a.\left( {\vec b\times\vec c}\right) =\left| a\right|\left| {\left( {\vec b\times\vec c}\right)}\right|\cos\left(\theta \right)$
Where $\theta$ is the angle between $\vec a$ and $\left( {\vec b\times\vec c}\right)$
$\vec a.\left( {\vec b\times\vec c}\right) =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}}\right|$
$ =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right){\rm{.}}\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}}\right)\hat i -\left( {{b_1}{c_3} - {b_3}{c_1}}\right)\hat j +\left( {{b_1}{c_2} - {b_2}{c_1}}\right)\hat k}\right\}$
$ = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}}\right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}}\right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}}\right)$
Complete step by step solution: Given: Four position vectors lie in the same plane.
Position vectors are :
$\overrightarrow {OA} = 3\hat I - 2\hat J -\hat K$
$\overrightarrow {OB} = 2\hat I + 3\hat J - 4\hat K$
$\overrightarrow {OC} =\; -\hat I +\hat J + 2\hat K$
$\overrightarrow {OD} = 4\hat I + 5\hat J +\lambda\hat K$
$\vec a =\overrightarrow {AB} =\overrightarrow {OB} -\overrightarrow {OA} = -\hat i + 5\hat j - 3\hat k$
$\vec b =\overrightarrow {AC} =\overrightarrow {OC} -\overrightarrow {OA}\; = - 4\hat i + 3\hat j + 3\hat k$
$\vec c =\overrightarrow {AD} =\overrightarrow {OD} -\overrightarrow {OA} =\hat i + 7\hat j +\left( {\lambda + 1}\right)\hat k$
${a_1}= - 1,\;{a_2} = 5,{a_3} = - 3$
${b_1}= - 4,{b_2} = 3,\;{b_3} = 3$
${c_1}= 1,\;{c_2} = 7,\;{c_3} =\lambda + 1$
Since the points are coplanar therefore we take the scalar triple product of three vectors.
$\vec a.\left( {\vec b\times\vec c}\right) =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}}\right|$
$ =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}}\right)\hat i -\left( {{b_1}{c_3} - {b_3}{c_1}}\right)\hat j +\left( {{b_1}{c_2} - {b_2}{c_1}}\right)\hat k}\right\}$
$ = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}}\right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}}\right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}}\right)$
Now for coplanar vectors
$\vec a{\rm{.}}\left( {\vec b\times\vec c}\right) = 0$
$\vec a.\left( {\vec b\times\vec c}\right) = - 1\left( {3\times\left( {\lambda + 1}\right) - 3\times 7}\right) - 5\left( { - 4\times\left( {\lambda + 1}\right) - 3\times 1}\right) - 3\left( { - 4\times 7 - 3\times 1}\right) = 0$
$ - 3\lambda - 3 + 21 - 5\left( { - 4\lambda - 4 - 3}\right) - 3\left( { - 28 - 3}\right) = 0$
$\;\; - 3\lambda - 3 + 21 + 20\lambda + 35 + 84 + 9 = 0$
$\;\;17\lambda + 146 = 0$
$\;\;\lambda =\dfrac{{ - 146}}{{17}}$
Thus, Option (A) is correct.
Note: Here question asked to find the value of unknown variable .In order to find the value of, we must know the concept of coplanarity. Scalar triple product formula is used to find the required value. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as .
The resultant scalar triple product is always scalar.Whenever we get the value of a scalar triple product as zero we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
