
If the points whose position, vectors are $3i - 2j - k,\;2i + 3j - 4k,\; - i + j + 2k$ and $4i + 5j +\lambda k$ lie on a plane, then\[\lambda = ?\] [IIT$1986$; Pb. CET$2003$].
- A. $\dfrac{{ - 146}}{{17}}$
B. $\dfrac{{146}}{{17}}$
C. $\dfrac{{ - 17}}{{146}}$
D. $\dfrac{{17}}{{146}}$
- A. $\dfrac{{ - 146}}{{17}}$
Answer
216.3k+ views
Hint: In this question we have to use the concept of coplanarity. Three vectors are said to be coplanar when they all are present in the same plane or we can say that all those vectors which can be parallel to the single plane are coplanar. In order to find whether vectors are coplanar or not we have to find a scalar triple product of three vectors. If the value of the scalar triple product is zero then we can say that three given vectors are coplanar.
Formula used: Scalar triple product of vectors$ =\vec a{\rm{.}}\left( {\vec b\times\vec c}\right)$
Where $\vec a$,$\vec b$ and $\vec c$ are three given vectors.
$\vec a.\left( {\vec b\times\vec c}\right) =\left| a\right|\left| {\left( {\vec b\times\vec c}\right)}\right|\cos\left(\theta \right)$
Where $\theta$ is the angle between $\vec a$ and $\left( {\vec b\times\vec c}\right)$
$\vec a.\left( {\vec b\times\vec c}\right) =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}}\right|$
$ =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right){\rm{.}}\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}}\right)\hat i -\left( {{b_1}{c_3} - {b_3}{c_1}}\right)\hat j +\left( {{b_1}{c_2} - {b_2}{c_1}}\right)\hat k}\right\}$
$ = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}}\right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}}\right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}}\right)$
Complete step by step solution: Given: Four position vectors lie in the same plane.
Position vectors are :
$\overrightarrow {OA} = 3\hat I - 2\hat J -\hat K$
$\overrightarrow {OB} = 2\hat I + 3\hat J - 4\hat K$
$\overrightarrow {OC} =\; -\hat I +\hat J + 2\hat K$
$\overrightarrow {OD} = 4\hat I + 5\hat J +\lambda\hat K$
$\vec a =\overrightarrow {AB} =\overrightarrow {OB} -\overrightarrow {OA} = -\hat i + 5\hat j - 3\hat k$
$\vec b =\overrightarrow {AC} =\overrightarrow {OC} -\overrightarrow {OA}\; = - 4\hat i + 3\hat j + 3\hat k$
$\vec c =\overrightarrow {AD} =\overrightarrow {OD} -\overrightarrow {OA} =\hat i + 7\hat j +\left( {\lambda + 1}\right)\hat k$
${a_1}= - 1,\;{a_2} = 5,{a_3} = - 3$
${b_1}= - 4,{b_2} = 3,\;{b_3} = 3$
${c_1}= 1,\;{c_2} = 7,\;{c_3} =\lambda + 1$
Since the points are coplanar therefore we take the scalar triple product of three vectors.
$\vec a.\left( {\vec b\times\vec c}\right) =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}}\right|$
$ =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}}\right)\hat i -\left( {{b_1}{c_3} - {b_3}{c_1}}\right)\hat j +\left( {{b_1}{c_2} - {b_2}{c_1}}\right)\hat k}\right\}$
$ = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}}\right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}}\right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}}\right)$
Now for coplanar vectors
$\vec a{\rm{.}}\left( {\vec b\times\vec c}\right) = 0$
$\vec a.\left( {\vec b\times\vec c}\right) = - 1\left( {3\times\left( {\lambda + 1}\right) - 3\times 7}\right) - 5\left( { - 4\times\left( {\lambda + 1}\right) - 3\times 1}\right) - 3\left( { - 4\times 7 - 3\times 1}\right) = 0$
$ - 3\lambda - 3 + 21 - 5\left( { - 4\lambda - 4 - 3}\right) - 3\left( { - 28 - 3}\right) = 0$
$\;\; - 3\lambda - 3 + 21 + 20\lambda + 35 + 84 + 9 = 0$
$\;\;17\lambda + 146 = 0$
$\;\;\lambda =\dfrac{{ - 146}}{{17}}$
Thus, Option (A) is correct.
Note: Here question asked to find the value of unknown variable .In order to find the value of, we must know the concept of coplanarity. Scalar triple product formula is used to find the required value. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as .
The resultant scalar triple product is always scalar.Whenever we get the value of a scalar triple product as zero we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Formula used: Scalar triple product of vectors$ =\vec a{\rm{.}}\left( {\vec b\times\vec c}\right)$
Where $\vec a$,$\vec b$ and $\vec c$ are three given vectors.
$\vec a.\left( {\vec b\times\vec c}\right) =\left| a\right|\left| {\left( {\vec b\times\vec c}\right)}\right|\cos\left(\theta \right)$
Where $\theta$ is the angle between $\vec a$ and $\left( {\vec b\times\vec c}\right)$
$\vec a.\left( {\vec b\times\vec c}\right) =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}}\right|$
$ =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right){\rm{.}}\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}}\right)\hat i -\left( {{b_1}{c_3} - {b_3}{c_1}}\right)\hat j +\left( {{b_1}{c_2} - {b_2}{c_1}}\right)\hat k}\right\}$
$ = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}}\right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}}\right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}}\right)$
Complete step by step solution: Given: Four position vectors lie in the same plane.
Position vectors are :
$\overrightarrow {OA} = 3\hat I - 2\hat J -\hat K$
$\overrightarrow {OB} = 2\hat I + 3\hat J - 4\hat K$
$\overrightarrow {OC} =\; -\hat I +\hat J + 2\hat K$
$\overrightarrow {OD} = 4\hat I + 5\hat J +\lambda\hat K$
$\vec a =\overrightarrow {AB} =\overrightarrow {OB} -\overrightarrow {OA} = -\hat i + 5\hat j - 3\hat k$
$\vec b =\overrightarrow {AC} =\overrightarrow {OC} -\overrightarrow {OA}\; = - 4\hat i + 3\hat j + 3\hat k$
$\vec c =\overrightarrow {AD} =\overrightarrow {OD} -\overrightarrow {OA} =\hat i + 7\hat j +\left( {\lambda + 1}\right)\hat k$
${a_1}= - 1,\;{a_2} = 5,{a_3} = - 3$
${b_1}= - 4,{b_2} = 3,\;{b_3} = 3$
${c_1}= 1,\;{c_2} = 7,\;{c_3} =\lambda + 1$
Since the points are coplanar therefore we take the scalar triple product of three vectors.
$\vec a.\left( {\vec b\times\vec c}\right) =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right).\left| {\begin{array}{*{20}{c}}{\hat i}&{\hat j}&{\hat k}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}}\right|$
$ =\left( {{a_1}\hat i + {a_2}\hat j + {a_3}\hat k}\right).\left\{ {\left( {{b_2}{c_3} - {b_3}{c_2}}\right)\hat i -\left( {{b_1}{c_3} - {b_3}{c_1}}\right)\hat j +\left( {{b_1}{c_2} - {b_2}{c_1}}\right)\hat k}\right\}$
$ = {a_1}\left( {{b_2}{c_3} - {b_3}{c_2}}\right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}}\right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}}\right)$
Now for coplanar vectors
$\vec a{\rm{.}}\left( {\vec b\times\vec c}\right) = 0$
$\vec a.\left( {\vec b\times\vec c}\right) = - 1\left( {3\times\left( {\lambda + 1}\right) - 3\times 7}\right) - 5\left( { - 4\times\left( {\lambda + 1}\right) - 3\times 1}\right) - 3\left( { - 4\times 7 - 3\times 1}\right) = 0$
$ - 3\lambda - 3 + 21 - 5\left( { - 4\lambda - 4 - 3}\right) - 3\left( { - 28 - 3}\right) = 0$
$\;\; - 3\lambda - 3 + 21 + 20\lambda + 35 + 84 + 9 = 0$
$\;\;17\lambda + 146 = 0$
$\;\;\lambda =\dfrac{{ - 146}}{{17}}$
Thus, Option (A) is correct.
Note: Here question asked to find the value of unknown variable .In order to find the value of, we must know the concept of coplanarity. Scalar triple product formula is used to find the required value. Scalar triple product means product of three vectors i.e. dot product of one of the vectors with cross product of other two vectors.
Scalar triple products are represented as .
The resultant scalar triple product is always scalar.Whenever we get the value of a scalar triple product as zero we can say that three vectors are coplanar.
Scalar triple product may be zero, negative and positive.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

