
If the lines \[\dfrac{{x - 1}}{{ - 3}} = \dfrac{{y - 2}}{{ - 2k}} = \dfrac{{z - 3}}{2}\] and \[\dfrac{{x - 1}}{k} = \dfrac{{y - 2}}{1} = \dfrac{{z - 3}}{5}\] are perpendicular, then find the value of k and hence find the equation of the plane containing these lines.
Answer
233.1k+ views
Hints: To solve this question, we must have a basic idea about the general equation of the line. At first, we have to find the parallel vectors corresponding to the respective lines. Then we will apply the equation of perpendicularity of the two vectors to the obtained vectors and thus the value of k can be determined. After substituting the value of k, we will get the line equations. Finally, we will apply the formula of plain containing two lines to get the plane equation.
Complete step-by-step solution:
We know the general equation of a line passing through \[P({{x}_{1}},{{y}_{1}},{{z}_{1}})\] having direction cosines or dcs l,m and n respectively is given by
\[\dfrac{x-{{x}_{1}}}{l}=\dfrac{y-{{y}_{1}}}{m}=\dfrac{z-{{z}_{1}}}{n}\] ……………………………………… (1)
Now the equations of the two lines are given by,
\[{{L}_{1}}:\dfrac{x-1}{-3}=\dfrac{y-2}{-2k}=\dfrac{z-3}{2}\] ……………………………………… (2)
\[{{L}_{2}}=\dfrac{x-1}{k}=\dfrac{y-2}{1}=\dfrac{z-3}{5}\] ……………………………………… (3)
Again we know that two parallel lines have equal dcs. For line \[{{L}_{1}}\] dcs are \[-3,-2k,k\] and for the line \[{{L}_{2}}\] dcs are \[k,1,5\] respectively.
Then the vectors parallel to the line \[{{L}_{1}}\] is given by
\[{{\vec{v}}_{1}}=-3\hat{i}-2k\hat{j}+2\hat{k}\] ……………………………………… (4)
And the vector parallel to the line \[{{L}_{2}}\] is given by
\[{{\vec{v}}_{2}}=k\hat{i}+\hat{j}+5\hat{k}\] ……………………………………… (5)
But according to the question the two lines \[{{L}_{1}}\] and \[{{L}_{2}}\] are perpendicular to each other. Then the parallel vectors corresponding to the lines must be perpendicular to each other. Hence \[{{\vec{v}}_{1}}\bot {{\vec{v}}_{2}}\].
We know the dot product of two perpendicular vectors is zero. Therefore
\[{{\vec{v}}_{1}}\cdot {{\vec{v}}_{2}}=0\] ……………………………………… (6)
Substituting the respective values of \[{{\vec{v}}_{1}}\] and \[{{\vec{v}}_{2}}\] from eq. (4) and eq. (5) in eq. (6), we will get
\[\Rightarrow \left( -3\hat{i}-2k\hat{j}+2\hat{k} \right)\cdot \left( k\hat{i}+\hat{j}+5\hat{k} \right)=0\]
\[\Rightarrow (-3)(k){{\hat{i}}^{2}}+(-2k)(1){{\hat{j}}^{2}}+(2)(5){{\hat{k}}^{2}}=0\]
We know that, \[{{\hat{i}}^{2}}={{\hat{j}}^{2}}={{\hat{k}}^{2}}=1\]
\[\Rightarrow -3k-2k+10=0\]
\[\Rightarrow 5k=10\]
\[\Rightarrow k=2\]……………………………………… (7)
Now equation of the lines is obtained by substituting the value of k obtained in eq. (7) in eq. (2) and eq. (3)
\[{{L}_{1}}:\dfrac{x-1}{-3}=\dfrac{y-2}{-2\times 2}=\dfrac{z-3}{2}\]
\[\Rightarrow \dfrac{x-1}{-3}=\dfrac{y-2}{-4}=\dfrac{z-3}{2}\]……………………………………… (8)
And
\[\Rightarrow {{L}_{2}}\text{ }:\dfrac{x-1}{2}=\dfrac{y-2}{1}=\dfrac{z-3}{5}\] ……………………………………… (9)
We know the formula that the equation of plane containing the lines \[\dfrac{x-{{x}_{1}}}{{{l}_{1}}}=\dfrac{y-{{y}_{1}}}{{{m}_{1}}}=\dfrac{z-{{z}_{1}}}{{{n}_{1}}}\] and \[\dfrac{x-{{x}_{1}}}{{{l}_{2}}}=\dfrac{y-{{y}_{1}}}{{{m}_{2}}}=\dfrac{z-{{z}_{1}}}{{{n}_{2}}}\] is given by
\[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{l}_{1}} & {{m}_{1}} & {{n}_{1}} \\
{{l}_{2}} & {{m}_{2}} & {{n}_{2}} \\
\end{matrix} \right|=0\] ……………………………………… (10)
Therefore applying this formula equation of the plane containing the lines\[{{L}_{1}}:\dfrac{x-1}{-3}=\dfrac{y-2}{-4}=\dfrac{z-3}{2}\]and \[{{L}_{2}}:\dfrac{x-1}{2}=\dfrac{y-2}{1}=\dfrac{z-3}{5}\]is given by
\[\begin{align}
& =\left| \begin{matrix}
x-1 & y-2 & z-3 \\
-3 & -4 & 2 \\
2 & 1 & 5 \\
\end{matrix} \right|=0 \\
& =(x-1)\left| \begin{matrix}
-4 & 2 \\
1 & 5 \\
\end{matrix} \right|-(y-2)\left| \begin{matrix}
-3 & 2 \\
2 & 5 \\
\end{matrix} \right|+(z-3)\left| \begin{matrix}
-3 & -4 \\
2 & 1 \\
\end{matrix} \right|=0
\end{align}\]
\[\begin{align}
& =(x-1)\left| \begin{matrix}
-4 & 2 \\
1 & 5 \\
\end{matrix} \right|-(y-2)\left| \begin{matrix}
-3 & 2 \\
2 & 5 \\
\end{matrix} \right|+(z-3)\left| \begin{matrix}
-3 & -4 \\
2 & 1 \\
\end{matrix} \right|=0 \\
& =(x-1)(-4\times 5-2\times 1)-(y-2)(-3\times 5-2\times 2)+(z-3)(-3\times 1-(-4)\times 2)=0 \\
\end{align}\]
\[=-22(x-1)-(-19)(y-2)+5(z-3)=0\]
\[=-22x+22+19y-38+5z-15=0\]
On solving, we get
\[=-22x+19y+5z-31=0\]……………………………
This is the required equation of plane.
Note: The direction cosines of a line are the cosines of the angles made by the line with coordinate axes. \[\hat{i},\hat{j},\hat{k}\] are unit vectors along X, Y and Z axes respectively. The dot product of the vectors \[\left( {{x}_{1}}\hat{i}+{{y}_{1}}\hat{j}+{{z}_{1}}\hat{k} \right)\] and \[\left( {{x}_{2}}\hat{i}+{{y}_{2}}\hat{j}+{{z}_{2}}\hat{k} \right)\] is \[\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}+{{z}_{1}}{{z}_{2}} \right)\]. The determinant \[\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\] can be solved as follows,
\[\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|={{a}_{1}}\left| \begin{matrix}
{{b}_{2}} & {{b}_{3}} \\
{{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|-{{a}_{2}}\left| \begin{matrix}
{{b}_{1}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{3}} \\
\end{matrix} \right|+{{a}_{3}}\left| \begin{matrix}
{{b}_{1}} & {{b}_{2}} \\
{{c}_{1}} & {{c}_{2}} \\
\end{matrix} \right|={{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}} \right)-{{a}_{2}}\left( {{b}_{1}}{{c}_{3}}-{{c}_{1}}{{b}_{3}} \right)+{{a}_{3}}\left( {{b}_{1}}{{c}_{2}}-{{c}_{1}}{{b}_{2}} \right)\].
Complete step-by-step solution:
We know the general equation of a line passing through \[P({{x}_{1}},{{y}_{1}},{{z}_{1}})\] having direction cosines or dcs l,m and n respectively is given by
\[\dfrac{x-{{x}_{1}}}{l}=\dfrac{y-{{y}_{1}}}{m}=\dfrac{z-{{z}_{1}}}{n}\] ……………………………………… (1)
Now the equations of the two lines are given by,
\[{{L}_{1}}:\dfrac{x-1}{-3}=\dfrac{y-2}{-2k}=\dfrac{z-3}{2}\] ……………………………………… (2)
\[{{L}_{2}}=\dfrac{x-1}{k}=\dfrac{y-2}{1}=\dfrac{z-3}{5}\] ……………………………………… (3)
Again we know that two parallel lines have equal dcs. For line \[{{L}_{1}}\] dcs are \[-3,-2k,k\] and for the line \[{{L}_{2}}\] dcs are \[k,1,5\] respectively.
Then the vectors parallel to the line \[{{L}_{1}}\] is given by
\[{{\vec{v}}_{1}}=-3\hat{i}-2k\hat{j}+2\hat{k}\] ……………………………………… (4)
And the vector parallel to the line \[{{L}_{2}}\] is given by
\[{{\vec{v}}_{2}}=k\hat{i}+\hat{j}+5\hat{k}\] ……………………………………… (5)
But according to the question the two lines \[{{L}_{1}}\] and \[{{L}_{2}}\] are perpendicular to each other. Then the parallel vectors corresponding to the lines must be perpendicular to each other. Hence \[{{\vec{v}}_{1}}\bot {{\vec{v}}_{2}}\].
We know the dot product of two perpendicular vectors is zero. Therefore
\[{{\vec{v}}_{1}}\cdot {{\vec{v}}_{2}}=0\] ……………………………………… (6)
Substituting the respective values of \[{{\vec{v}}_{1}}\] and \[{{\vec{v}}_{2}}\] from eq. (4) and eq. (5) in eq. (6), we will get
\[\Rightarrow \left( -3\hat{i}-2k\hat{j}+2\hat{k} \right)\cdot \left( k\hat{i}+\hat{j}+5\hat{k} \right)=0\]
\[\Rightarrow (-3)(k){{\hat{i}}^{2}}+(-2k)(1){{\hat{j}}^{2}}+(2)(5){{\hat{k}}^{2}}=0\]
We know that, \[{{\hat{i}}^{2}}={{\hat{j}}^{2}}={{\hat{k}}^{2}}=1\]
\[\Rightarrow -3k-2k+10=0\]
\[\Rightarrow 5k=10\]
\[\Rightarrow k=2\]……………………………………… (7)
Now equation of the lines is obtained by substituting the value of k obtained in eq. (7) in eq. (2) and eq. (3)
\[{{L}_{1}}:\dfrac{x-1}{-3}=\dfrac{y-2}{-2\times 2}=\dfrac{z-3}{2}\]
\[\Rightarrow \dfrac{x-1}{-3}=\dfrac{y-2}{-4}=\dfrac{z-3}{2}\]……………………………………… (8)
And
\[\Rightarrow {{L}_{2}}\text{ }:\dfrac{x-1}{2}=\dfrac{y-2}{1}=\dfrac{z-3}{5}\] ……………………………………… (9)
We know the formula that the equation of plane containing the lines \[\dfrac{x-{{x}_{1}}}{{{l}_{1}}}=\dfrac{y-{{y}_{1}}}{{{m}_{1}}}=\dfrac{z-{{z}_{1}}}{{{n}_{1}}}\] and \[\dfrac{x-{{x}_{1}}}{{{l}_{2}}}=\dfrac{y-{{y}_{1}}}{{{m}_{2}}}=\dfrac{z-{{z}_{1}}}{{{n}_{2}}}\] is given by
\[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{l}_{1}} & {{m}_{1}} & {{n}_{1}} \\
{{l}_{2}} & {{m}_{2}} & {{n}_{2}} \\
\end{matrix} \right|=0\] ……………………………………… (10)
Therefore applying this formula equation of the plane containing the lines\[{{L}_{1}}:\dfrac{x-1}{-3}=\dfrac{y-2}{-4}=\dfrac{z-3}{2}\]and \[{{L}_{2}}:\dfrac{x-1}{2}=\dfrac{y-2}{1}=\dfrac{z-3}{5}\]is given by
\[\begin{align}
& =\left| \begin{matrix}
x-1 & y-2 & z-3 \\
-3 & -4 & 2 \\
2 & 1 & 5 \\
\end{matrix} \right|=0 \\
& =(x-1)\left| \begin{matrix}
-4 & 2 \\
1 & 5 \\
\end{matrix} \right|-(y-2)\left| \begin{matrix}
-3 & 2 \\
2 & 5 \\
\end{matrix} \right|+(z-3)\left| \begin{matrix}
-3 & -4 \\
2 & 1 \\
\end{matrix} \right|=0
\end{align}\]
\[\begin{align}
& =(x-1)\left| \begin{matrix}
-4 & 2 \\
1 & 5 \\
\end{matrix} \right|-(y-2)\left| \begin{matrix}
-3 & 2 \\
2 & 5 \\
\end{matrix} \right|+(z-3)\left| \begin{matrix}
-3 & -4 \\
2 & 1 \\
\end{matrix} \right|=0 \\
& =(x-1)(-4\times 5-2\times 1)-(y-2)(-3\times 5-2\times 2)+(z-3)(-3\times 1-(-4)\times 2)=0 \\
\end{align}\]
\[=-22(x-1)-(-19)(y-2)+5(z-3)=0\]
\[=-22x+22+19y-38+5z-15=0\]
On solving, we get
\[=-22x+19y+5z-31=0\]……………………………
This is the required equation of plane.
Note: The direction cosines of a line are the cosines of the angles made by the line with coordinate axes. \[\hat{i},\hat{j},\hat{k}\] are unit vectors along X, Y and Z axes respectively. The dot product of the vectors \[\left( {{x}_{1}}\hat{i}+{{y}_{1}}\hat{j}+{{z}_{1}}\hat{k} \right)\] and \[\left( {{x}_{2}}\hat{i}+{{y}_{2}}\hat{j}+{{z}_{2}}\hat{k} \right)\] is \[\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}+{{z}_{1}}{{z}_{2}} \right)\]. The determinant \[\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\] can be solved as follows,
\[\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|={{a}_{1}}\left| \begin{matrix}
{{b}_{2}} & {{b}_{3}} \\
{{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|-{{a}_{2}}\left| \begin{matrix}
{{b}_{1}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{3}} \\
\end{matrix} \right|+{{a}_{3}}\left| \begin{matrix}
{{b}_{1}} & {{b}_{2}} \\
{{c}_{1}} & {{c}_{2}} \\
\end{matrix} \right|={{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}} \right)-{{a}_{2}}\left( {{b}_{1}}{{c}_{3}}-{{c}_{1}}{{b}_{3}} \right)+{{a}_{3}}\left( {{b}_{1}}{{c}_{2}}-{{c}_{1}}{{b}_{2}} \right)\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

