
If the length of a simple pendulum is increased by $44\% $ then what is the change in the time period of the pendulum?
Answer
148.5k+ views
Hint: A simple pendulum of length l is increased by $44\% $. We have to find the change in the time period of the pendulum. The change in the time period of the pendulum in percentage is given by $ \Rightarrow \left( {\dfrac{{T'}}{T} - 1} \right) \times 100$
Where
$T$ is the actual time period of the pendulum.
$T'$ is the time period of the pendulum after increasing the length.
Complete step by step solution:
A simple pendulum has a string with a very small mass (sphere ball). It is small but strong enough not to stretch. The mass suspended from the light string that can oscillate when displaced from its rest position.
Pendulums are in common usage such as in clocks, child’s swing and some are for fun. For small displacements, a pendulum is a simple harmonic oscillator.
The pendulum’s time period is proportional to the square root of the length of string and inversely proportional to the square root of acceleration due to gravity.
The time period of a simple pendulum is given by
$T \propto \sqrt {\dfrac{l}{g}} $
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Where,
T is the time period
l is the length of the string
g is the acceleration due to gravity
Given,
Length of simple pendulum is increased by $44\% $
Which means the length of the string, $l = l + \dfrac{{44l}}{{100}}$
The time period of a simple pendulum is given by
$T = 2\pi \sqrt {\dfrac{l}{g}} {\text{ }} \to {\text{1}}$
Let the increase in time period be $T'$
Substitute the known value
$T' = 2\pi \sqrt {\dfrac{{l + \dfrac{{44l}}{{100}}}}{g}} $
$T' = 2\pi \sqrt {\dfrac{{l\left( {1 + \dfrac{{44}}{{100}}} \right)}}{g}} $
$T' = 2\pi \sqrt {\dfrac{{l\left( {\dfrac{{144}}{{100}}} \right)}}{g}} $
$T' = 2\pi \left( {\dfrac{{12}}{{10}}} \right)\sqrt {\dfrac{l}{g}} $
$T' = (1.2) \times 2\pi \sqrt {\dfrac{l}{g}} $
From equation 1 we get
$T' = (1.2) \times T$
$\dfrac{{T'}}{T} = (1.2){\text{ }} \to {\text{2}}$
The change in the time period of the pendulum is given by
$ \Rightarrow \left( {\dfrac{{T'}}{T} - 1} \right) \times 100$
From equation 2 we get
$ \Rightarrow \left( {\dfrac{{T'}}{T} - 1} \right) \times 100 = \left( {1.2 - 1} \right) \times 100$
$ \Rightarrow \left( {\dfrac{{T'}}{T} - 1} \right) \times 100 = 20\% $
The change in the time period of the pendulum is $20\% $
Note: In percentage we write the change in the time period of the pendulum as $20\% $. If we write it numerically, the change in the time period of the pendulum is 0.2s.
The percentage change in time period of the pendulum is $20\% $
Numerically, it is$ \Rightarrow \dfrac{{20}}{{100}} = 0.2s$
Where
$T$ is the actual time period of the pendulum.
$T'$ is the time period of the pendulum after increasing the length.
Complete step by step solution:
A simple pendulum has a string with a very small mass (sphere ball). It is small but strong enough not to stretch. The mass suspended from the light string that can oscillate when displaced from its rest position.
Pendulums are in common usage such as in clocks, child’s swing and some are for fun. For small displacements, a pendulum is a simple harmonic oscillator.
The pendulum’s time period is proportional to the square root of the length of string and inversely proportional to the square root of acceleration due to gravity.
The time period of a simple pendulum is given by
$T \propto \sqrt {\dfrac{l}{g}} $
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Where,
T is the time period
l is the length of the string
g is the acceleration due to gravity
Given,
Length of simple pendulum is increased by $44\% $
Which means the length of the string, $l = l + \dfrac{{44l}}{{100}}$
The time period of a simple pendulum is given by
$T = 2\pi \sqrt {\dfrac{l}{g}} {\text{ }} \to {\text{1}}$
Let the increase in time period be $T'$
Substitute the known value
$T' = 2\pi \sqrt {\dfrac{{l + \dfrac{{44l}}{{100}}}}{g}} $
$T' = 2\pi \sqrt {\dfrac{{l\left( {1 + \dfrac{{44}}{{100}}} \right)}}{g}} $
$T' = 2\pi \sqrt {\dfrac{{l\left( {\dfrac{{144}}{{100}}} \right)}}{g}} $
$T' = 2\pi \left( {\dfrac{{12}}{{10}}} \right)\sqrt {\dfrac{l}{g}} $
$T' = (1.2) \times 2\pi \sqrt {\dfrac{l}{g}} $
From equation 1 we get
$T' = (1.2) \times T$
$\dfrac{{T'}}{T} = (1.2){\text{ }} \to {\text{2}}$
The change in the time period of the pendulum is given by
$ \Rightarrow \left( {\dfrac{{T'}}{T} - 1} \right) \times 100$
From equation 2 we get
$ \Rightarrow \left( {\dfrac{{T'}}{T} - 1} \right) \times 100 = \left( {1.2 - 1} \right) \times 100$
$ \Rightarrow \left( {\dfrac{{T'}}{T} - 1} \right) \times 100 = 20\% $
The change in the time period of the pendulum is $20\% $
Note: In percentage we write the change in the time period of the pendulum as $20\% $. If we write it numerically, the change in the time period of the pendulum is 0.2s.
The percentage change in time period of the pendulum is $20\% $
Numerically, it is$ \Rightarrow \dfrac{{20}}{{100}} = 0.2s$
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Uniform Acceleration

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
