
If the given planes \[ax + by + cz + d = 0\] and \[a'x + b'y + c'z + d' = 0\] be mutually perpendicular. Then, which of the following equations is true?
A. \[\dfrac{a}{{a'}} = \dfrac{b}{{b'}} = \dfrac{c}{{c'}}\]
B. \[\dfrac{a}{{a'}} + \dfrac{b}{{b'}} + \dfrac{c}{{c'}} = 0\]
C. \[aa' + bb' + cc' + dd' = 0\]
D. \[aa' + bb' + cc' = 0\]
Answer
216k+ views
Hint: Here, the equations of the two mutually perpendicular planes are given. Apply the condition required for the two planes to be perpendicular to each other on the given equations of the plane. Solve it and get the required answer.
Formula used: If two planes \[{a_1}x + {b_1}y + {c_1}z + {d_1} = 0\] and \[{a_2}x + {b_2}y + {c_2}z + {d_2} = 0\] are perpendicular to each other then, \[{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\].
Complete step by step solution: Given: The planes \[ax + by + cz + d = 0\] and \[a'x + b'y + c'z + d' = 0\] be mutually perpendicular to each other.
In the given planes, \[\left( {a,b,c} \right)\] are the direction ratios of the plane \[ax + by + cz + d = 0\] and \[\left( {a',b',c'} \right)\] are the direction ratios of the plane \[a'x + b'y + c'z + d' = 0\].
Apply the condition required for the perpendicular planes, if two planes \[{a_1}x + {b_1}y + {c_1}z + {d_1} = 0\] and \[{a_2}x + {b_2}y + {c_2}z + {d_2} = 0\] are perpendicular to each other then \[{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\].
So, for the given planes we get
\[aa' + bb' + cc' = 0\]
Thus, Option (D) is correct.
Note: The condition required for the perpendicular planes \[{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\] is obtained from the formula of the angle between the two planes.
The angle between the plane \[{a_1}x + {b_1}y + {c_1}z + {d_1} = 0\] and \[{a_2}x + {b_2}y + {c_2}z + {d_2} = 0\] is \[\cos \theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\].
When the planes are perpendicular, the angle between them is \[{90^ \circ }\].
We know that \[\cos \left( {{{90}^ \circ }} \right) = 0\]. So, the numerator must be 0.
Thus, \[{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\].
Formula used: If two planes \[{a_1}x + {b_1}y + {c_1}z + {d_1} = 0\] and \[{a_2}x + {b_2}y + {c_2}z + {d_2} = 0\] are perpendicular to each other then, \[{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\].
Complete step by step solution: Given: The planes \[ax + by + cz + d = 0\] and \[a'x + b'y + c'z + d' = 0\] be mutually perpendicular to each other.
In the given planes, \[\left( {a,b,c} \right)\] are the direction ratios of the plane \[ax + by + cz + d = 0\] and \[\left( {a',b',c'} \right)\] are the direction ratios of the plane \[a'x + b'y + c'z + d' = 0\].
Apply the condition required for the perpendicular planes, if two planes \[{a_1}x + {b_1}y + {c_1}z + {d_1} = 0\] and \[{a_2}x + {b_2}y + {c_2}z + {d_2} = 0\] are perpendicular to each other then \[{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\].
So, for the given planes we get
\[aa' + bb' + cc' = 0\]
Thus, Option (D) is correct.
Note: The condition required for the perpendicular planes \[{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\] is obtained from the formula of the angle between the two planes.
The angle between the plane \[{a_1}x + {b_1}y + {c_1}z + {d_1} = 0\] and \[{a_2}x + {b_2}y + {c_2}z + {d_2} = 0\] is \[\cos \theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\].
When the planes are perpendicular, the angle between them is \[{90^ \circ }\].
We know that \[\cos \left( {{{90}^ \circ }} \right) = 0\]. So, the numerator must be 0.
Thus, \[{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\].
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

