
If the focal length of a lens for marginal rays and paraxial rays are $12.5cm$ and $13cm$ respectively, the longitudinal spherical aberration is-
(A) $0.25cm$
(B) $0.5cm$
(C) $0.75cm$
(D) $1cm$
Answer
147.3k+ views
Hint The Paraxial rays are the rays which pass through the principal axis or are very close to it, whereas marginal rays are the rays which pass through the ends of the aperture of the lens. The difference between the image formation by the paraxial and the marginal rays causes spherical aberration.
Complete Step by step solution
In a lens prone to spherical aberration, the image formation by the marginal rays and the paraxial rays is at different lengths. The point of convergence of marginal rays is closer than the point of convergence of paraxial rays. The length between these two points is known as longitudinal spherical aberration.

In the question, focal length of marginal rays$ = 12.5cm$
And focal length of paraxial rays $ = 13cm$
Hence the longitudinal spherical aberration is$ = 13 - 12.5 = 0.5cm$.
Therefore, option (B) is correct.
Additional information In spherical lenses the light is deviated and either converges or diverges. In either case an image is formed at the focus of the lens. But this holds true only for small lenses, as the aperture of the lens is increased, many optical errors arise due to refraction and due to the shape of mirrors.
Spherical aberration arises when the aperture of a spherical mirror is large. Here, the image does not converge at focus, instead the marginal rays are focused closer to the lens while the paraxial rays are focused away from the lens. This results in an unclear image of the object. The plane between these two focal planes where spherical aberration is the lowest, is known as the circle of least confusion.
Note The longitudinal spherical aberration is the distance between the focal points for marginal and paraxial rays. All the rays that pass through the lens form an image inside this region only, this produces an unclear image of the object in the given region.
Complete Step by step solution
In a lens prone to spherical aberration, the image formation by the marginal rays and the paraxial rays is at different lengths. The point of convergence of marginal rays is closer than the point of convergence of paraxial rays. The length between these two points is known as longitudinal spherical aberration.

In the question, focal length of marginal rays$ = 12.5cm$
And focal length of paraxial rays $ = 13cm$
Hence the longitudinal spherical aberration is$ = 13 - 12.5 = 0.5cm$.
Therefore, option (B) is correct.
Additional information In spherical lenses the light is deviated and either converges or diverges. In either case an image is formed at the focus of the lens. But this holds true only for small lenses, as the aperture of the lens is increased, many optical errors arise due to refraction and due to the shape of mirrors.
Spherical aberration arises when the aperture of a spherical mirror is large. Here, the image does not converge at focus, instead the marginal rays are focused closer to the lens while the paraxial rays are focused away from the lens. This results in an unclear image of the object. The plane between these two focal planes where spherical aberration is the lowest, is known as the circle of least confusion.
Note The longitudinal spherical aberration is the distance between the focal points for marginal and paraxial rays. All the rays that pass through the lens form an image inside this region only, this produces an unclear image of the object in the given region.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electrical Field of Charged Spherical Shell - JEE
