
If the focal length of a lens for marginal rays and paraxial rays are $12.5cm$ and $13cm$ respectively, the longitudinal spherical aberration is-
(A) $0.25cm$
(B) $0.5cm$
(C) $0.75cm$
(D) $1cm$
Answer
134.4k+ views
Hint The Paraxial rays are the rays which pass through the principal axis or are very close to it, whereas marginal rays are the rays which pass through the ends of the aperture of the lens. The difference between the image formation by the paraxial and the marginal rays causes spherical aberration.
Complete Step by step solution
In a lens prone to spherical aberration, the image formation by the marginal rays and the paraxial rays is at different lengths. The point of convergence of marginal rays is closer than the point of convergence of paraxial rays. The length between these two points is known as longitudinal spherical aberration.

In the question, focal length of marginal rays$ = 12.5cm$
And focal length of paraxial rays $ = 13cm$
Hence the longitudinal spherical aberration is$ = 13 - 12.5 = 0.5cm$.
Therefore, option (B) is correct.
Additional information In spherical lenses the light is deviated and either converges or diverges. In either case an image is formed at the focus of the lens. But this holds true only for small lenses, as the aperture of the lens is increased, many optical errors arise due to refraction and due to the shape of mirrors.
Spherical aberration arises when the aperture of a spherical mirror is large. Here, the image does not converge at focus, instead the marginal rays are focused closer to the lens while the paraxial rays are focused away from the lens. This results in an unclear image of the object. The plane between these two focal planes where spherical aberration is the lowest, is known as the circle of least confusion.
Note The longitudinal spherical aberration is the distance between the focal points for marginal and paraxial rays. All the rays that pass through the lens form an image inside this region only, this produces an unclear image of the object in the given region.
Complete Step by step solution
In a lens prone to spherical aberration, the image formation by the marginal rays and the paraxial rays is at different lengths. The point of convergence of marginal rays is closer than the point of convergence of paraxial rays. The length between these two points is known as longitudinal spherical aberration.

In the question, focal length of marginal rays$ = 12.5cm$
And focal length of paraxial rays $ = 13cm$
Hence the longitudinal spherical aberration is$ = 13 - 12.5 = 0.5cm$.
Therefore, option (B) is correct.
Additional information In spherical lenses the light is deviated and either converges or diverges. In either case an image is formed at the focus of the lens. But this holds true only for small lenses, as the aperture of the lens is increased, many optical errors arise due to refraction and due to the shape of mirrors.
Spherical aberration arises when the aperture of a spherical mirror is large. Here, the image does not converge at focus, instead the marginal rays are focused closer to the lens while the paraxial rays are focused away from the lens. This results in an unclear image of the object. The plane between these two focal planes where spherical aberration is the lowest, is known as the circle of least confusion.
Note The longitudinal spherical aberration is the distance between the focal points for marginal and paraxial rays. All the rays that pass through the lens form an image inside this region only, this produces an unclear image of the object in the given region.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage
