
If the coordinates of two points $A$ and $B$ are $\left( {\sqrt 7 ,0} \right)$ and $\left( { - \sqrt 7 ,0} \right)$ respectively and $P$ is any point on the conic $9{x^2} + 16{y^2} = 144$, then $PA + PB$ is equal to
A. $6$
B. $16$
C. $9$
D. $8$
Answer
206.7k+ views
Hint: Find out the parametric coordinate of the point $P$. Then find the lengths of the line segments $A$ and $B$ and add them.
Formula Used:
Distance between the points $A\left( {{x_1},{y_1}} \right)$ and $B\left( {{x_2},{y_2}} \right)$ is $AB = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $ units.
The parametric coordinate of any point on the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ is $\left( {a\cos \theta ,b\sin \theta } \right)$
Complete step by step solution:
The given equation of the conic is $9{x^2} + 16{y^2} = 144$, which represents an ellipse.
Convert the equation into the standard form of ellipse.
Divide both sides of the equation by $144$
$ \Rightarrow \dfrac{{9{x^2}}}{{144}} + \dfrac{{16{y^2}}}{{144}} = \dfrac{{144}}{{144}}\\ \Rightarrow \dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1$
Comparing this equation with the standard form of ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$, we get
${a^2} = 16$ and ${b^2} = 9$
${a^2} = 16 \Rightarrow a = \pm 4$
and ${b^2} = 9 \Rightarrow b = \pm 3$
The parametric coordinate of any point on the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ is $\left( {a\cos \theta ,b\sin \theta } \right)$
In this problem, $a = \pm 4$ and $b = \pm 3$
Taking positive values, we get $a = 4$ and $b = 3$
So, the parametric coordinate is $\left( {4\cos \theta ,3\sin \theta } \right)$
Let this point be $P$.
Now, find the lengths of the line segments $PA$ and $PB$.
$PA = \sqrt {{{\left( {\sqrt 7 - 4\cos \theta } \right)}^2} + {{\left( {0 - 3\sin \theta } \right)}^2}} $
Use the expansion ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
$ \Rightarrow \sqrt {7 - 8\sqrt 7 \cos \theta + 16{{\cos}^2}\theta + 9{{\sin}^2}\theta } $
Use the formula ${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow \sqrt {7 - 8\sqrt 7 \cos \theta + 16{{\cos}^2}\theta + 9\left( {1 - {{\cos}^2}\theta } \right)}$
$ \Rightarrow \sqrt {7 - 8\sqrt 7 \cos \theta + 16{{\cos}^2}\theta + 9 - 9{{\cos}^2}\theta } \\ = \sqrt {16 - 8\sqrt 7 \cos \theta + 7{{\cos}^2}\theta } \\ = \sqrt {{{\left( 4 \right)}^2} - 2 \times 4 \times \sqrt 7 \cos \theta + {{\left( {\sqrt 7 \cos \theta } \right)}^2}} \\ = \sqrt {{{\left( {4 - \sqrt 7 \cos \theta } \right)}^2}} \\ = 4 - \sqrt 7 \cos \theta $
$PB = \sqrt {{{\left( { - \sqrt 7 - 4\cos \theta } \right)}^2} + {{\left( {0 - 3\sin \theta } \right)}^2}} $
Use the expansion ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
$ \Rightarrow \sqrt {7 + 8\sqrt 7 \cos \theta + 16{{\cos}^2}\theta + 9{{\sin}^2}\theta } $
Use the formula ${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow \sqrt {7 + 8\sqrt 7 \cos \theta + 16{{\cos}^2}\theta + 9\left( {1 - {{\cos}^2}\theta } \right)} \\ = \sqrt {7 + 8\sqrt 7 \cos \theta + 16{{\cos}^2}\theta + 9 - 9{{\cos}^2}\theta } \\ = \sqrt {16 + 8\sqrt 7 \cos \theta + 7{{\cos}^2}\theta } \\ = \sqrt {{{\left( 4 \right)}^2} + 2 \times 4 \times \sqrt 7 \cos \theta + {{\left( {\sqrt 7 \cos \theta } \right)}^2}} \\ = \sqrt {{{\left( {4 + \sqrt 7 \cos \theta } \right)}^2}} \\ = 4 + \sqrt 7 \cos \theta $
Add the lengths of the line segments $PA$ and $PB$.
$\therefore PA + PB = \left( {4 - \sqrt 7 \cos \theta } \right) + \left( {4 + \sqrt 7 \cos \theta } \right) = 8$
Option ‘D’ is correct
Note: Many students can’t remember the parametric coordinate of a point on an ellipse and the distance formula. You need to use the relation ${\sin ^2}\theta + {\cos ^2}\theta = 1$ to make the term under root a perfect square root.
Formula Used:
Distance between the points $A\left( {{x_1},{y_1}} \right)$ and $B\left( {{x_2},{y_2}} \right)$ is $AB = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $ units.
The parametric coordinate of any point on the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ is $\left( {a\cos \theta ,b\sin \theta } \right)$
Complete step by step solution:
The given equation of the conic is $9{x^2} + 16{y^2} = 144$, which represents an ellipse.
Convert the equation into the standard form of ellipse.
Divide both sides of the equation by $144$
$ \Rightarrow \dfrac{{9{x^2}}}{{144}} + \dfrac{{16{y^2}}}{{144}} = \dfrac{{144}}{{144}}\\ \Rightarrow \dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1$
Comparing this equation with the standard form of ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$, we get
${a^2} = 16$ and ${b^2} = 9$
${a^2} = 16 \Rightarrow a = \pm 4$
and ${b^2} = 9 \Rightarrow b = \pm 3$
The parametric coordinate of any point on the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ is $\left( {a\cos \theta ,b\sin \theta } \right)$
In this problem, $a = \pm 4$ and $b = \pm 3$
Taking positive values, we get $a = 4$ and $b = 3$
So, the parametric coordinate is $\left( {4\cos \theta ,3\sin \theta } \right)$
Let this point be $P$.
Now, find the lengths of the line segments $PA$ and $PB$.
$PA = \sqrt {{{\left( {\sqrt 7 - 4\cos \theta } \right)}^2} + {{\left( {0 - 3\sin \theta } \right)}^2}} $
Use the expansion ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
$ \Rightarrow \sqrt {7 - 8\sqrt 7 \cos \theta + 16{{\cos}^2}\theta + 9{{\sin}^2}\theta } $
Use the formula ${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow \sqrt {7 - 8\sqrt 7 \cos \theta + 16{{\cos}^2}\theta + 9\left( {1 - {{\cos}^2}\theta } \right)}$
$ \Rightarrow \sqrt {7 - 8\sqrt 7 \cos \theta + 16{{\cos}^2}\theta + 9 - 9{{\cos}^2}\theta } \\ = \sqrt {16 - 8\sqrt 7 \cos \theta + 7{{\cos}^2}\theta } \\ = \sqrt {{{\left( 4 \right)}^2} - 2 \times 4 \times \sqrt 7 \cos \theta + {{\left( {\sqrt 7 \cos \theta } \right)}^2}} \\ = \sqrt {{{\left( {4 - \sqrt 7 \cos \theta } \right)}^2}} \\ = 4 - \sqrt 7 \cos \theta $
$PB = \sqrt {{{\left( { - \sqrt 7 - 4\cos \theta } \right)}^2} + {{\left( {0 - 3\sin \theta } \right)}^2}} $
Use the expansion ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$
$ \Rightarrow \sqrt {7 + 8\sqrt 7 \cos \theta + 16{{\cos}^2}\theta + 9{{\sin}^2}\theta } $
Use the formula ${\sin ^2}\theta + {\cos ^2}\theta = 1$
$ \Rightarrow \sqrt {7 + 8\sqrt 7 \cos \theta + 16{{\cos}^2}\theta + 9\left( {1 - {{\cos}^2}\theta } \right)} \\ = \sqrt {7 + 8\sqrt 7 \cos \theta + 16{{\cos}^2}\theta + 9 - 9{{\cos}^2}\theta } \\ = \sqrt {16 + 8\sqrt 7 \cos \theta + 7{{\cos}^2}\theta } \\ = \sqrt {{{\left( 4 \right)}^2} + 2 \times 4 \times \sqrt 7 \cos \theta + {{\left( {\sqrt 7 \cos \theta } \right)}^2}} \\ = \sqrt {{{\left( {4 + \sqrt 7 \cos \theta } \right)}^2}} \\ = 4 + \sqrt 7 \cos \theta $
Add the lengths of the line segments $PA$ and $PB$.
$\therefore PA + PB = \left( {4 - \sqrt 7 \cos \theta } \right) + \left( {4 + \sqrt 7 \cos \theta } \right) = 8$
Option ‘D’ is correct
Note: Many students can’t remember the parametric coordinate of a point on an ellipse and the distance formula. You need to use the relation ${\sin ^2}\theta + {\cos ^2}\theta = 1$ to make the term under root a perfect square root.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

Equation of Trajectory in Projectile Motion: Derivation & Proof

Average and RMS Value in Physics: Formula, Comparison & Application

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

How to Convert a Galvanometer into an Ammeter or Voltmeter

