
If the coordinates of the point A, B, C and D be $\left( {2,3, - 1} \right),\left( {3,5, - 3} \right),\left( {1,2,3} \right)$ and $\left( {3,5,7} \right)$ respectively, then the projection of $\overrightarrow {AB} $ on $\overrightarrow {CD} $ is
A. $0$
B. $1$
C. $2$
D. $3$
Answer
163.8k+ views
Hint: In order to solve this type of question, we will first find the direction ratios of $\overrightarrow {AB} $ and $\overrightarrow {CD} $ by substituting the values obtained. Next, we will find the dot product of $\overrightarrow {AB} $ and $\overrightarrow {CD} $ to find the projection of $\overrightarrow {AB} $ on $\overrightarrow {CD} $. Again, we will substitute the values obtained above to get the correct answer.
Formula used:
Direction ratios of the line passing through a line $A\left( {{x_1},{y_1},{z_1}} \right)$ and $B\left( {{x_2},{y_2},{z_2}} \right)$ is given by,
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
$\overrightarrow {AB} .\overrightarrow {CD} = \left( {{a_2}} \right)\left( {{a_1}} \right) + \left( {{b_2}} \right)\left( {{b_1}} \right) + \left( {{c_2}} \right)\left( {{c_1}} \right)$
Complete step by step solution:
For $\overrightarrow {AB} $,
$A\left( {2,3, - 1} \right)$ and $B\left( {3,5, - 3} \right)$
Direction ratios of $\overrightarrow {AB} $,
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
Substituting the values,
$\left( {3 - 2} \right),\left( {5 - 3} \right),\left( { - 3 - \left( { - 1} \right)} \right)$
$\therefore {a_1} = 1,\;{b_1} = 2,\;{c_1} = - 2$ ………………..equation $\left( 1 \right)$
$\overrightarrow {AB} = \;\widehat i + 2\widehat j - 2\widehat k$
For $\overrightarrow {CD} $,
$C\left( {1,2,3} \right)$ and $D\left( {3,5,7} \right)$
Direction ratios of $\overrightarrow {CD} $,
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
Substituting the values,
$\left( {3 - 1} \right),\left( {5 - 2} \right),\left( {7 - 3} \right)$
$\therefore {a_2} = 2,\;{b_2} = 3,\;{c_2} = 4$ ………………..equation $\left( 2 \right)$
$\overrightarrow {CD} = 2\widehat i + 3\widehat j + 4\widehat k$
Now, we will find the dot product of $\overrightarrow {AB} $ and $\overrightarrow {CD} $,
$\overrightarrow {AB} .\overrightarrow {CD} = \left( {{a_2}} \right)\left( {{a_1}} \right) + \left( {{b_2}} \right)\left( {{b_1}} \right) + \left( {{c_2}} \right)\left( {{c_1}} \right)$
Substituting the values from equation $\left( 1 \right)$ and $\left( 2 \right)$
$\overrightarrow {AB} .\overrightarrow {CD} = \left( 2 \right)\left( 1 \right) + \left( 3 \right)\left( 2 \right) - \left( 2 \right)\left( 4 \right)$
$\overrightarrow {AB} .\overrightarrow {CD} = 2 + 6 - 8$
$\overrightarrow {AB} .\overrightarrow {CD} = 0$
Thus, the projection of $\overrightarrow {AB} $ on $\overrightarrow {CD} $ is 0.
$\therefore $ The correct option is A.
Note: The direction ratios are very helpful in finding the relationship between two lines or vectors. The direction ratios can be used to find the direction cosines of a line or the angle between the two lines. The direction ratios are also useful in finding the dot product between the two vectors.
Formula used:
Direction ratios of the line passing through a line $A\left( {{x_1},{y_1},{z_1}} \right)$ and $B\left( {{x_2},{y_2},{z_2}} \right)$ is given by,
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
$\overrightarrow {AB} .\overrightarrow {CD} = \left( {{a_2}} \right)\left( {{a_1}} \right) + \left( {{b_2}} \right)\left( {{b_1}} \right) + \left( {{c_2}} \right)\left( {{c_1}} \right)$
Complete step by step solution:
For $\overrightarrow {AB} $,
$A\left( {2,3, - 1} \right)$ and $B\left( {3,5, - 3} \right)$
Direction ratios of $\overrightarrow {AB} $,
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
Substituting the values,
$\left( {3 - 2} \right),\left( {5 - 3} \right),\left( { - 3 - \left( { - 1} \right)} \right)$
$\therefore {a_1} = 1,\;{b_1} = 2,\;{c_1} = - 2$ ………………..equation $\left( 1 \right)$
$\overrightarrow {AB} = \;\widehat i + 2\widehat j - 2\widehat k$
For $\overrightarrow {CD} $,
$C\left( {1,2,3} \right)$ and $D\left( {3,5,7} \right)$
Direction ratios of $\overrightarrow {CD} $,
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
Substituting the values,
$\left( {3 - 1} \right),\left( {5 - 2} \right),\left( {7 - 3} \right)$
$\therefore {a_2} = 2,\;{b_2} = 3,\;{c_2} = 4$ ………………..equation $\left( 2 \right)$
$\overrightarrow {CD} = 2\widehat i + 3\widehat j + 4\widehat k$
Now, we will find the dot product of $\overrightarrow {AB} $ and $\overrightarrow {CD} $,
$\overrightarrow {AB} .\overrightarrow {CD} = \left( {{a_2}} \right)\left( {{a_1}} \right) + \left( {{b_2}} \right)\left( {{b_1}} \right) + \left( {{c_2}} \right)\left( {{c_1}} \right)$
Substituting the values from equation $\left( 1 \right)$ and $\left( 2 \right)$
$\overrightarrow {AB} .\overrightarrow {CD} = \left( 2 \right)\left( 1 \right) + \left( 3 \right)\left( 2 \right) - \left( 2 \right)\left( 4 \right)$
$\overrightarrow {AB} .\overrightarrow {CD} = 2 + 6 - 8$
$\overrightarrow {AB} .\overrightarrow {CD} = 0$
Thus, the projection of $\overrightarrow {AB} $ on $\overrightarrow {CD} $ is 0.
$\therefore $ The correct option is A.
Note: The direction ratios are very helpful in finding the relationship between two lines or vectors. The direction ratios can be used to find the direction cosines of a line or the angle between the two lines. The direction ratios are also useful in finding the dot product between the two vectors.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
