
If the area of the triangle formed by the points\[z\], \[z + iz\] and \[iz\] on the complex plane is\[18\], then the value of \[\left| z \right|\;\]is
A) \[6\]
B) \[9\]
C) \[3\sqrt 2 \]
D) \[2\sqrt 3 \]
Answer
217.5k+ views
Hint: in this question we have to find the modulus of one vertices of triangle. In order to find this we have to use formula of area of triangle and equate this area with given area of triangle. First write each vertex as combination of real and imaginary number.
Formula Used:Area of triangle is given by
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right|\]
Where
A is area of triangle
\[{a_i}\] is a real part of vertices
\[{b_i}\] is a imaginary part of vertices
Complete step by step solution:Given: Three vertices of triangle and area of triangle equal to \[18\]
Vertices of triangle is given as\[z\], \[z + iz\]and \[iz\]
We know that
\[z = x + iy\]
\[iz = ix - y = - y + ix\] (Because\[{i^2} = - 1\])
\[z + iz = (x + iy) + ( - y + ix)\]
\[z + iz = (x - y) + i(x + y)\]
Now area of triangle is given by
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right|\]
Where
A is area of triangle
\[{a_i}\] is a real part of vertices
\[{b_i}\] is a imaginary part of vertices
Expand determinant to get area of triangle
\[A = \dfrac{1}{2}({a_1}({b_2} - {b_3}) - {a_2}({b_1} - {b_3}) + {a_3}({b_1} - {b_2}))\]
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right|\]
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}x&y&1\\{ - y}&x&1\\{(x - y)}&{(x + y)}&1\end{array}} \right|\]
Expand the determinant
\[A = \dfrac{1}{2}(x(x - x - y) - y( - y - x + y) + (x - y)(y - x))\]
\[A = \dfrac{1}{2}( - xy + xy + ( - yx - {y^2} - {x^2} + xy))\]
\[A = \dfrac{1}{2}({x^2} + {y^2})\]
We know that
\[\left| z \right| = \sqrt {{x^2} + {y^2}} \]
\[{\left| z \right|^2} = {x^2} + {y^2}\]
\[A = \dfrac{1}{2}{\left| z \right|^2}\]
Area of triangle is given in question which is equal to\[18\]
\[A = \dfrac{1}{2}{\left| z \right|^2} = 18\]
\[{\left| z \right|^2} = 36\]
\[\left| z \right| = 6\]
Option ‘A’ is correct
Note: We have to remember that complex number is a number which is a combination of real and imaginary number. S o in combination number question we have to represent number as a combination of real and its imaginary part.
Imaginary part is known as iota. Square of iota is equal to negative one.
Formula Used:Area of triangle is given by
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right|\]
Where
A is area of triangle
\[{a_i}\] is a real part of vertices
\[{b_i}\] is a imaginary part of vertices
Complete step by step solution:Given: Three vertices of triangle and area of triangle equal to \[18\]
Vertices of triangle is given as\[z\], \[z + iz\]and \[iz\]
We know that
\[z = x + iy\]
\[iz = ix - y = - y + ix\] (Because\[{i^2} = - 1\])
\[z + iz = (x + iy) + ( - y + ix)\]
\[z + iz = (x - y) + i(x + y)\]
Now area of triangle is given by
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right|\]
Where
A is area of triangle
\[{a_i}\] is a real part of vertices
\[{b_i}\] is a imaginary part of vertices
Expand determinant to get area of triangle
\[A = \dfrac{1}{2}({a_1}({b_2} - {b_3}) - {a_2}({b_1} - {b_3}) + {a_3}({b_1} - {b_2}))\]
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right|\]
\[A = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}x&y&1\\{ - y}&x&1\\{(x - y)}&{(x + y)}&1\end{array}} \right|\]
Expand the determinant
\[A = \dfrac{1}{2}(x(x - x - y) - y( - y - x + y) + (x - y)(y - x))\]
\[A = \dfrac{1}{2}( - xy + xy + ( - yx - {y^2} - {x^2} + xy))\]
\[A = \dfrac{1}{2}({x^2} + {y^2})\]
We know that
\[\left| z \right| = \sqrt {{x^2} + {y^2}} \]
\[{\left| z \right|^2} = {x^2} + {y^2}\]
\[A = \dfrac{1}{2}{\left| z \right|^2}\]
Area of triangle is given in question which is equal to\[18\]
\[A = \dfrac{1}{2}{\left| z \right|^2} = 18\]
\[{\left| z \right|^2} = 36\]
\[\left| z \right| = 6\]
Option ‘A’ is correct
Note: We have to remember that complex number is a number which is a combination of real and imaginary number. S o in combination number question we have to represent number as a combination of real and its imaginary part.
Imaginary part is known as iota. Square of iota is equal to negative one.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

