
If the angle between the lines represented by the equation ${y^2} + kxy - {x^2}{\tan ^2}A = 0$ be $2A$, then $k = $
A $0$
B $1$
C $2$
D $\tan A$
Answer
217.8k+ views
Hint: First we will compare the given equation ${y^2} + kxy - {x^2}{\tan ^2}A = 0$ with the general equation $a{x^2} + 2hxy + b{y^2} = 0$ and find the value of $a$, $b$ and $h$. Will put all these values in the formula for the angle between two lines and the given angle is $2A$. Then after solving we will get the value of $k$.
Formula Used: $\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
$tan2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
Complete step by step solution: Given, equation is ${y^2} + kxy - {x^2}{\tan ^2}A = 0$
The general equation is $a{x^2} + 2hxy + b{y^2} = 0$
On comparing, we will get
$a = - {\tan ^2}A$, $h = \dfrac{k}{2}$ and $b = 1$
$\alpha = 2A$
We know the angle between the two lines is
$\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
Putting all the values
$\tan 2A = \left| {\dfrac{{2\sqrt {{{\left( {\dfrac{k}{2}} \right)}^2} - \left( { - {{\tan }^2}A} \right)\left( 1 \right)} }}{{ - {{\tan }^2}A + 1}}} \right|$
$\tan 2A = \left| {\dfrac{{2\sqrt {\dfrac{{{k^2} + 4{{\tan }^2}A}}{4}} }}{{1 - {{\tan }^2}A}}} \right|$
We know $tan2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
$\dfrac{{2\tan A}}{{1 - {{\tan }^2}A}} = \dfrac{{\sqrt {{k^2} + 4{{\tan }^2}A} }}{{1 - {{\tan }^2}A}}$
After solving, we get
$2\tan A = \sqrt {{k^2} + 4{{\tan }^2}A} $
Squaring both the sides
$4{\tan ^2}A = {k^2} + 4{\tan ^2}A$
${k^2} = 0$
$k = 0$
Hence, the angle between the lines is ${0^ \circ }$.
Therefore, correct option is A
Note: Students should solve the question correctly with concentrations to avoid any calculation mistakes. While finding the value of $a$, $b$ and $h$ they should focus on the sign of coefficient whether it is positive or negative.
Formula Used: $\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
$tan2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
Complete step by step solution: Given, equation is ${y^2} + kxy - {x^2}{\tan ^2}A = 0$
The general equation is $a{x^2} + 2hxy + b{y^2} = 0$
On comparing, we will get
$a = - {\tan ^2}A$, $h = \dfrac{k}{2}$ and $b = 1$
$\alpha = 2A$
We know the angle between the two lines is
$\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
Putting all the values
$\tan 2A = \left| {\dfrac{{2\sqrt {{{\left( {\dfrac{k}{2}} \right)}^2} - \left( { - {{\tan }^2}A} \right)\left( 1 \right)} }}{{ - {{\tan }^2}A + 1}}} \right|$
$\tan 2A = \left| {\dfrac{{2\sqrt {\dfrac{{{k^2} + 4{{\tan }^2}A}}{4}} }}{{1 - {{\tan }^2}A}}} \right|$
We know $tan2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
$\dfrac{{2\tan A}}{{1 - {{\tan }^2}A}} = \dfrac{{\sqrt {{k^2} + 4{{\tan }^2}A} }}{{1 - {{\tan }^2}A}}$
After solving, we get
$2\tan A = \sqrt {{k^2} + 4{{\tan }^2}A} $
Squaring both the sides
$4{\tan ^2}A = {k^2} + 4{\tan ^2}A$
${k^2} = 0$
$k = 0$
Hence, the angle between the lines is ${0^ \circ }$.
Therefore, correct option is A
Note: Students should solve the question correctly with concentrations to avoid any calculation mistakes. While finding the value of $a$, $b$ and $h$ they should focus on the sign of coefficient whether it is positive or negative.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

