
If \[\tan x = \dfrac{b}{a}\], then what is the value of the trigonometric expression \[a \cos 2x + b \sin 2x\]?
A. \[a\]
B. \[a - b\]
C. \[a + b\]
D. \[b\]
Answer
162.6k+ views
Hint: Simplify the trigonometric equation using the formulas of \[\cos 2x\] and \[\sin 2x\] in terms of \[\tan x\]. After that, substitute the value of \[\tan x\] in the equation and simplify it to get the required answer.
Formula Used:
\[\sin 2x = \dfrac{{2\tan x}}{{1 + \tan^{2}x}}\]
\[\cos 2x = \dfrac{{1 - \tan^{2}x}}{{1 + \tan^{2}x}}\]
Complete step by step solution:
The given trigonometric expression is \[a \cos 2x + b \sin 2x\], and \[\tan x = \dfrac{b}{a}\].
Let’s simplify the given expression.
\[f\left( x \right) = a \cos 2x + b \sin 2x\]
Substitute the formulas of \[\cos 2x\] and \[\sin 2x\] in terms of \[\tan x\].
\[f\left( x \right) = a \left( {\dfrac{{1 - \tan^{2}x}}{{1 + \tan^{2}x}}} \right) + b \left( {\dfrac{{2\tan x}}{{1 + \tan^{2}x}}} \right)\]
\[ \Rightarrow \]\[f\left( x \right) = \dfrac{{a\left( {1 - \tan^{2}x} \right) + 2b\tan x}}{{1 + \tan^{2}x}}\]
Substitute \[\tan x = \dfrac{b}{a}\] in the above equation.
\[f\left( x \right) = \dfrac{{a\left( {1 - {{\left( {\dfrac{b}{a}} \right)}^2}} \right) + 2b\left( {\dfrac{b}{a}} \right)}}{{1 + {{\left( {\dfrac{b}{a}} \right)}^2}}}\]
Simplify the equation.
\[f\left( x \right) = \dfrac{{a\left( {\dfrac{{{a^2} - {b^2}}}{{{a^2}}}} \right) + 2\left( {\dfrac{{{b^2}}}{a}} \right)}}{{\dfrac{{{a^2} + {b^2}}}{{{a^2}}}}}\]
\[ \Rightarrow \]\[f\left( x \right) = \dfrac{{\dfrac{{{a^2} - {b^2}}}{a} + \dfrac{{2{b^2}}}{a}}}{{\dfrac{{{a^2} + {b^2}}}{{{a^2}}}}}\]
Add the terms of the numerator with the common denominator.
\[f\left( x \right) = \dfrac{{\dfrac{{{a^2} - {b^2} + 2{b^2}}}{a}}}{{\dfrac{{{a^2} + {b^2}}}{{{a^2}}}}}\]
\[ \Rightarrow \]\[f\left( x \right) = \dfrac{{{a^2} + {b^2}}}{{\left( {\dfrac{{{a^2} + {b^2}}}{a}} \right)}}\]
Cancel out the common terms.
\[f\left( x \right) = \dfrac{1}{{\left( {\dfrac{1}{a}} \right)}}\]
\[ \Rightarrow \]\[f\left( x \right) = a\]
Hence the correct option is A.
Note: Euler's formula and the Binomial theorem are used to calculate the multiple angles of the type \[\sin nx\], \[\cos nx\], and \[\tan nx\].
The multiple angle formulas for the basic trigonometric functions are:
\[\sin nx = \sum\limits_{k = 0}^n {\cos^{k}} x \sin^{\left( {n - k} \right)}x \sin\left[ {\dfrac{\pi }{2}\left( {n - k} \right)} \right]\]
\[\cos nx = \sum\limits_{k = 0}^n {cos^{k}} x \sin^{\left( {n - k} \right)}x \cos\left[ {\dfrac{\pi }{2}\left( {n - k} \right)} \right]\]
\[\tan nx = \dfrac{{\sin nx}}{{\cos nx}}\]
Formula Used:
\[\sin 2x = \dfrac{{2\tan x}}{{1 + \tan^{2}x}}\]
\[\cos 2x = \dfrac{{1 - \tan^{2}x}}{{1 + \tan^{2}x}}\]
Complete step by step solution:
The given trigonometric expression is \[a \cos 2x + b \sin 2x\], and \[\tan x = \dfrac{b}{a}\].
Let’s simplify the given expression.
\[f\left( x \right) = a \cos 2x + b \sin 2x\]
Substitute the formulas of \[\cos 2x\] and \[\sin 2x\] in terms of \[\tan x\].
\[f\left( x \right) = a \left( {\dfrac{{1 - \tan^{2}x}}{{1 + \tan^{2}x}}} \right) + b \left( {\dfrac{{2\tan x}}{{1 + \tan^{2}x}}} \right)\]
\[ \Rightarrow \]\[f\left( x \right) = \dfrac{{a\left( {1 - \tan^{2}x} \right) + 2b\tan x}}{{1 + \tan^{2}x}}\]
Substitute \[\tan x = \dfrac{b}{a}\] in the above equation.
\[f\left( x \right) = \dfrac{{a\left( {1 - {{\left( {\dfrac{b}{a}} \right)}^2}} \right) + 2b\left( {\dfrac{b}{a}} \right)}}{{1 + {{\left( {\dfrac{b}{a}} \right)}^2}}}\]
Simplify the equation.
\[f\left( x \right) = \dfrac{{a\left( {\dfrac{{{a^2} - {b^2}}}{{{a^2}}}} \right) + 2\left( {\dfrac{{{b^2}}}{a}} \right)}}{{\dfrac{{{a^2} + {b^2}}}{{{a^2}}}}}\]
\[ \Rightarrow \]\[f\left( x \right) = \dfrac{{\dfrac{{{a^2} - {b^2}}}{a} + \dfrac{{2{b^2}}}{a}}}{{\dfrac{{{a^2} + {b^2}}}{{{a^2}}}}}\]
Add the terms of the numerator with the common denominator.
\[f\left( x \right) = \dfrac{{\dfrac{{{a^2} - {b^2} + 2{b^2}}}{a}}}{{\dfrac{{{a^2} + {b^2}}}{{{a^2}}}}}\]
\[ \Rightarrow \]\[f\left( x \right) = \dfrac{{{a^2} + {b^2}}}{{\left( {\dfrac{{{a^2} + {b^2}}}{a}} \right)}}\]
Cancel out the common terms.
\[f\left( x \right) = \dfrac{1}{{\left( {\dfrac{1}{a}} \right)}}\]
\[ \Rightarrow \]\[f\left( x \right) = a\]
Hence the correct option is A.
Note: Euler's formula and the Binomial theorem are used to calculate the multiple angles of the type \[\sin nx\], \[\cos nx\], and \[\tan nx\].
The multiple angle formulas for the basic trigonometric functions are:
\[\sin nx = \sum\limits_{k = 0}^n {\cos^{k}} x \sin^{\left( {n - k} \right)}x \sin\left[ {\dfrac{\pi }{2}\left( {n - k} \right)} \right]\]
\[\cos nx = \sum\limits_{k = 0}^n {cos^{k}} x \sin^{\left( {n - k} \right)}x \cos\left[ {\dfrac{\pi }{2}\left( {n - k} \right)} \right]\]
\[\tan nx = \dfrac{{\sin nx}}{{\cos nx}}\]
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
