
If \[\tan \theta + \tan \left( {\theta + \dfrac{\pi }{3}} \right) + \tan \left( {\theta - \dfrac{\pi }{3}} \right) = k\tan 3\theta \]. Then calculate the value of \[k\].
A. 1
B. 3
C. \[\dfrac{1}{3}\]
D. None of these
Answer
232.8k+ views
Hint: First we will apply the formula \[\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\] and \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\] in the second and third terms of the left side of the given equation. Then simplify the left side expression and apply the formula \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\]. Compare both sides of the equation.
Formula Used:
\[\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\]
\[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\]
\[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\]
Complete step by step solution:
Given equation is
\[\tan \theta + \tan \left( {\theta + \dfrac{\pi }{3}} \right) + \tan \left( {\theta - \dfrac{\pi }{3}} \right) = k\tan 3\theta \]
Now apply the formulas \[\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\] and \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\]
\[ \Rightarrow \tan \theta + \dfrac{{\tan \theta + \tan \dfrac{\pi }{3}}}{{1 - \tan \theta \tan \dfrac{\pi }{3}}} + \dfrac{{\tan \theta - \tan \dfrac{\pi }{3}}}{{1 + \tan \theta \tan \dfrac{\pi }{3}}} = k\tan 3\theta \]
Now putting \[\tan \dfrac{\pi }{3} = \sqrt 3 \]
\[ \Rightarrow \tan \theta + \dfrac{{\tan \theta + \sqrt 3 }}{{1 - \sqrt 3 \tan \theta }} + \dfrac{{\tan \theta - \sqrt 3 }}{{1 + \sqrt 3 \tan \theta }} = k\tan 3\theta \]
Simplify the left side of the equation
\[ \Rightarrow \tan \theta + \dfrac{{\left( {\tan \theta + \sqrt 3 } \right)\left( {1 + \sqrt 3 \tan \theta } \right) + \left( {\tan \theta - \sqrt 3 } \right)\left( {1 - \sqrt 3 \tan \theta } \right)}}{{\left( {1 - \sqrt 3 \tan \theta } \right)\left( {1 + \sqrt 3 \tan \theta } \right)}} = k\tan 3\theta \]
Apply the formula \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\] in the denominator and simplify the numerator
\[ \Rightarrow \tan \theta + \dfrac{{\tan \theta + \sqrt 3 + \sqrt 3 {{\tan }^2}\theta + 3\tan \theta + \tan \theta - \sqrt 3 - \sqrt 3 {{\tan }^2}\theta + 3\tan \theta }}{{{1^2} - {{\left( {\sqrt 3 \tan \theta } \right)}^2}}} = k\tan 3\theta \]
Cancel out \[\sqrt 3 \] and \[\sqrt 3 {\tan ^2}\theta \]
\[ \Rightarrow \tan \theta + \dfrac{{\tan \theta + 3\tan \theta + \tan \theta + 3\tan \theta }}{{{1^2} - {{\left( {\sqrt 3 \tan \theta } \right)}^2}}} = k\tan 3\theta \]
\[ \Rightarrow \tan \theta + \dfrac{{8\tan \theta }}{{{1^2} - 3{{\tan }^2}\theta }} = k\tan 3\theta \]
Add two terms of left side expression
\[ \Rightarrow \dfrac{{\tan \theta - 3{{\tan }^3}\theta + 8\tan \theta }}{{{1^2} - 3{{\tan }^2}\theta }} = k\tan 3\theta \]
\[ \Rightarrow 3\dfrac{{\left( {3\tan \theta - {{\tan }^3}\theta } \right)}}{{{1^2} - 3{{\tan }^2}\theta }} = k\tan 3\theta \]
Apply the formula \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\] left side expression
\[ \Rightarrow 3\tan 3\theta = k\tan 3\theta \]
\[ \Rightarrow k = 3\]
Hence option B is the correct option.
Note: Students often confused with the formulas \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\] and \[\tan 3\theta = \dfrac{{3\tan \theta + {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\]. But the correct formula is \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\].
Formula Used:
\[\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\]
\[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\]
\[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\]
Complete step by step solution:
Given equation is
\[\tan \theta + \tan \left( {\theta + \dfrac{\pi }{3}} \right) + \tan \left( {\theta - \dfrac{\pi }{3}} \right) = k\tan 3\theta \]
Now apply the formulas \[\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\] and \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\]
\[ \Rightarrow \tan \theta + \dfrac{{\tan \theta + \tan \dfrac{\pi }{3}}}{{1 - \tan \theta \tan \dfrac{\pi }{3}}} + \dfrac{{\tan \theta - \tan \dfrac{\pi }{3}}}{{1 + \tan \theta \tan \dfrac{\pi }{3}}} = k\tan 3\theta \]
Now putting \[\tan \dfrac{\pi }{3} = \sqrt 3 \]
\[ \Rightarrow \tan \theta + \dfrac{{\tan \theta + \sqrt 3 }}{{1 - \sqrt 3 \tan \theta }} + \dfrac{{\tan \theta - \sqrt 3 }}{{1 + \sqrt 3 \tan \theta }} = k\tan 3\theta \]
Simplify the left side of the equation
\[ \Rightarrow \tan \theta + \dfrac{{\left( {\tan \theta + \sqrt 3 } \right)\left( {1 + \sqrt 3 \tan \theta } \right) + \left( {\tan \theta - \sqrt 3 } \right)\left( {1 - \sqrt 3 \tan \theta } \right)}}{{\left( {1 - \sqrt 3 \tan \theta } \right)\left( {1 + \sqrt 3 \tan \theta } \right)}} = k\tan 3\theta \]
Apply the formula \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\] in the denominator and simplify the numerator
\[ \Rightarrow \tan \theta + \dfrac{{\tan \theta + \sqrt 3 + \sqrt 3 {{\tan }^2}\theta + 3\tan \theta + \tan \theta - \sqrt 3 - \sqrt 3 {{\tan }^2}\theta + 3\tan \theta }}{{{1^2} - {{\left( {\sqrt 3 \tan \theta } \right)}^2}}} = k\tan 3\theta \]
Cancel out \[\sqrt 3 \] and \[\sqrt 3 {\tan ^2}\theta \]
\[ \Rightarrow \tan \theta + \dfrac{{\tan \theta + 3\tan \theta + \tan \theta + 3\tan \theta }}{{{1^2} - {{\left( {\sqrt 3 \tan \theta } \right)}^2}}} = k\tan 3\theta \]
\[ \Rightarrow \tan \theta + \dfrac{{8\tan \theta }}{{{1^2} - 3{{\tan }^2}\theta }} = k\tan 3\theta \]
Add two terms of left side expression
\[ \Rightarrow \dfrac{{\tan \theta - 3{{\tan }^3}\theta + 8\tan \theta }}{{{1^2} - 3{{\tan }^2}\theta }} = k\tan 3\theta \]
\[ \Rightarrow 3\dfrac{{\left( {3\tan \theta - {{\tan }^3}\theta } \right)}}{{{1^2} - 3{{\tan }^2}\theta }} = k\tan 3\theta \]
Apply the formula \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\] left side expression
\[ \Rightarrow 3\tan 3\theta = k\tan 3\theta \]
\[ \Rightarrow k = 3\]
Hence option B is the correct option.
Note: Students often confused with the formulas \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\] and \[\tan 3\theta = \dfrac{{3\tan \theta + {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\]. But the correct formula is \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

