
If $\tan A = \dfrac{{ - 1}}{2}$ and $\tan B = \dfrac{{ - 1}}{3}$ then $A + B = $
A. $\dfrac{\pi }{4}$
B. $\dfrac{{3\pi }}{4}$
C. $\dfrac{{5\pi }}{4}$
D. None
Answer
218.4k+ views
Hint: In order to solve this type of question, we will use trigonometric identity $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ . We will substitute the given values of \[\tan A\] and \[\tan B\]in the above chosen trigonometric identity. Then we will solve it by simplifying it in order to get the desired correct answer.
Formula used:
$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Complete step by step solution:
We are given that,
$\tan A = \dfrac{{ - 1}}{2}$ ………………..equation$\left( 1 \right)$
$\tan B = \dfrac{{ - 1}}{3}$ ………………..equation$\left( 2 \right)$
We know that,
$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Substituting equation $\left( 1 \right)$ and $\left( 2 \right)$ in the above equation,
$\tan \left( {A + B} \right) = \left[ {\dfrac{{\left( {\dfrac{{ - 1}}{2}} \right) + \left( {\dfrac{{ - 1}}{3}} \right)}}{{1 - \left( {\dfrac{{ - 1}}{2}} \right)\left( {\dfrac{{ - 1}}{3}} \right)}}} \right]$
$\tan \left( {A + B} \right) = \left[ {\dfrac{{\left( {\dfrac{{ - 3 - 2}}{6}} \right)}}{{1 - \left( {\dfrac{1}{6}} \right)}}} \right]$
Simplifying it,
$\tan \left( {A + B} \right) = \left[ {\dfrac{{\left( {\dfrac{{ - 5}}{6}} \right)}}{{\left( {\dfrac{5}{6}} \right)}}} \right]$
$\tan \left( {A + B} \right) = \left( { - 1} \right)$
Solving it further,
$A + B = {\tan ^{ - 1}}\left( { - 1} \right)$
$A + B = \dfrac{{3\pi }}{4}$ $\left[ {\because {{\tan }^{ - 1}}\left( { - 1} \right) = \dfrac{{3\pi }}{4}} \right]$
$\therefore $ The correct option is B.
Note: We have to choose the correct trigonometric identities as these types of questions require the use of correct application of trigonometric rules to get the correct answer.As we have been given the values of \[\tan A\] and \[\tan B\] we have selected the identity of the tangent. Apart from the trigonometric identities we must also remember all the values of the trigonometric functions at each of the specific angles.
Formula used:
$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Complete step by step solution:
We are given that,
$\tan A = \dfrac{{ - 1}}{2}$ ………………..equation$\left( 1 \right)$
$\tan B = \dfrac{{ - 1}}{3}$ ………………..equation$\left( 2 \right)$
We know that,
$\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
Substituting equation $\left( 1 \right)$ and $\left( 2 \right)$ in the above equation,
$\tan \left( {A + B} \right) = \left[ {\dfrac{{\left( {\dfrac{{ - 1}}{2}} \right) + \left( {\dfrac{{ - 1}}{3}} \right)}}{{1 - \left( {\dfrac{{ - 1}}{2}} \right)\left( {\dfrac{{ - 1}}{3}} \right)}}} \right]$
$\tan \left( {A + B} \right) = \left[ {\dfrac{{\left( {\dfrac{{ - 3 - 2}}{6}} \right)}}{{1 - \left( {\dfrac{1}{6}} \right)}}} \right]$
Simplifying it,
$\tan \left( {A + B} \right) = \left[ {\dfrac{{\left( {\dfrac{{ - 5}}{6}} \right)}}{{\left( {\dfrac{5}{6}} \right)}}} \right]$
$\tan \left( {A + B} \right) = \left( { - 1} \right)$
Solving it further,
$A + B = {\tan ^{ - 1}}\left( { - 1} \right)$
$A + B = \dfrac{{3\pi }}{4}$ $\left[ {\because {{\tan }^{ - 1}}\left( { - 1} \right) = \dfrac{{3\pi }}{4}} \right]$
$\therefore $ The correct option is B.
Note: We have to choose the correct trigonometric identities as these types of questions require the use of correct application of trigonometric rules to get the correct answer.As we have been given the values of \[\tan A\] and \[\tan B\] we have selected the identity of the tangent. Apart from the trigonometric identities we must also remember all the values of the trigonometric functions at each of the specific angles.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

