
If ${{S}_{n}}=(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}})$, then ${{S}_{\infty }}$ is equal to
A. $1$
B. $\dfrac{1}{2}$
C. $\dfrac{3}{2}$
D. None of these
Answer
163.5k+ views
Hint: In this question, we are to find the sum of the infinite series. Here we don’t know the type of the series. Then, we have another method to solve this series and to find the required sum. i.e., we can simplify the given expression, since the terms are related to one another. The simplification starts by multiplying the conjugate of the first term of the series on both sides. So, we can eliminate one of the terms from the series and it goes on till we get the required sum.
Formula used: Some of the important formulae are:
$\begin{align}
& (a+b)(a-b)={{a}^{2}}-{{b}^{2}} \\
& (a+b)(a+b)={{(a+b)}^{2}} \\
& \Rightarrow {{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& (a-b)(a-b)={{(a-b)}^{2}} \\
& \Rightarrow {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}$
Complete step by step solution: Given series is
${{S}_{n}}=(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}})$
Where we have the last term
On multiplying both sides of the series by the conjugate of the first term we have from the given series is $(1-{{3}^{-1}})$
I.e.,
$(1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-1}})(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}})$
Since we know that,
$(a-b)(a+b)={{a}^{2}}-{{b}^{2}}$ we can write $(1-{{3}^{-1}})(1+{{3}^{-1}})=(1-{{3}^{-2}})$.
On substituting, we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-1}})(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
& =(1-{{3}^{-2}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
\end{align}$
Similarly, in the above equation, $(1-{{3}^{-2}})(1+{{3}^{-2}})=(1-{{3}^{-4}})$
So, on substituting, we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-2}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-4}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
\end{align}$
The above process goes on and we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-{{2}^{n}}}})(1+{{3}^{-{{2}^{n}}}}) \\
& \Rightarrow (1-{{3}^{-1}}){{S}_{n}}=1-{{({{3}^{-{{2}^{n}}}})}^{2}} \\
& \Rightarrow (1-{{3}^{-1}}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
& \Rightarrow (1-\dfrac{1}{3}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
\end{align}$
On simplifying, we get
$\begin{align}
& (\dfrac{2}{3}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
& \Rightarrow {{S}_{n}}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{n+1}}}} \right) \\
\end{align}$
Then, for the sum of the infinite terms, substitute $n=\infty $, then we get
$\begin{align}
& {{S}_{n}}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{n+1}}}} \right) \\
& \Rightarrow {{S}_{\infty }}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{\infty +1}}}} \right) \\
& \Rightarrow {{S}_{\infty }}=\dfrac{3}{2}\left( 1-0 \right) \\
& \therefore {{S}_{\infty }}=\dfrac{3}{2} \\
\end{align}$
Thus, Option (C) is correct.
Note: Here we need to remember that, the given series is unable to explain its type of progression. So, we used simplifying method which is possible for the given series. So, by using simple formulae, we get the required sum to the infinite series.
Formula used: Some of the important formulae are:
$\begin{align}
& (a+b)(a-b)={{a}^{2}}-{{b}^{2}} \\
& (a+b)(a+b)={{(a+b)}^{2}} \\
& \Rightarrow {{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& (a-b)(a-b)={{(a-b)}^{2}} \\
& \Rightarrow {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}$
Complete step by step solution: Given series is
${{S}_{n}}=(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}})$
Where we have the last term
On multiplying both sides of the series by the conjugate of the first term we have from the given series is $(1-{{3}^{-1}})$
I.e.,
$(1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-1}})(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}})$
Since we know that,
$(a-b)(a+b)={{a}^{2}}-{{b}^{2}}$ we can write $(1-{{3}^{-1}})(1+{{3}^{-1}})=(1-{{3}^{-2}})$.
On substituting, we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-1}})(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
& =(1-{{3}^{-2}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
\end{align}$
Similarly, in the above equation, $(1-{{3}^{-2}})(1+{{3}^{-2}})=(1-{{3}^{-4}})$
So, on substituting, we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-2}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-4}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
\end{align}$
The above process goes on and we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-{{2}^{n}}}})(1+{{3}^{-{{2}^{n}}}}) \\
& \Rightarrow (1-{{3}^{-1}}){{S}_{n}}=1-{{({{3}^{-{{2}^{n}}}})}^{2}} \\
& \Rightarrow (1-{{3}^{-1}}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
& \Rightarrow (1-\dfrac{1}{3}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
\end{align}$
On simplifying, we get
$\begin{align}
& (\dfrac{2}{3}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
& \Rightarrow {{S}_{n}}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{n+1}}}} \right) \\
\end{align}$
Then, for the sum of the infinite terms, substitute $n=\infty $, then we get
$\begin{align}
& {{S}_{n}}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{n+1}}}} \right) \\
& \Rightarrow {{S}_{\infty }}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{\infty +1}}}} \right) \\
& \Rightarrow {{S}_{\infty }}=\dfrac{3}{2}\left( 1-0 \right) \\
& \therefore {{S}_{\infty }}=\dfrac{3}{2} \\
\end{align}$
Thus, Option (C) is correct.
Note: Here we need to remember that, the given series is unable to explain its type of progression. So, we used simplifying method which is possible for the given series. So, by using simple formulae, we get the required sum to the infinite series.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

JEE Main 2025 Cut-off For NIT Andhra Pradesh

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?
