
If ${{S}_{n}}=(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}})$, then ${{S}_{\infty }}$ is equal to
A. $1$
B. $\dfrac{1}{2}$
C. $\dfrac{3}{2}$
D. None of these
Answer
232.8k+ views
Hint: In this question, we are to find the sum of the infinite series. Here we don’t know the type of the series. Then, we have another method to solve this series and to find the required sum. i.e., we can simplify the given expression, since the terms are related to one another. The simplification starts by multiplying the conjugate of the first term of the series on both sides. So, we can eliminate one of the terms from the series and it goes on till we get the required sum.
Formula used: Some of the important formulae are:
$\begin{align}
& (a+b)(a-b)={{a}^{2}}-{{b}^{2}} \\
& (a+b)(a+b)={{(a+b)}^{2}} \\
& \Rightarrow {{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& (a-b)(a-b)={{(a-b)}^{2}} \\
& \Rightarrow {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}$
Complete step by step solution: Given series is
${{S}_{n}}=(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}})$
Where we have the last term
On multiplying both sides of the series by the conjugate of the first term we have from the given series is $(1-{{3}^{-1}})$
I.e.,
$(1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-1}})(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}})$
Since we know that,
$(a-b)(a+b)={{a}^{2}}-{{b}^{2}}$ we can write $(1-{{3}^{-1}})(1+{{3}^{-1}})=(1-{{3}^{-2}})$.
On substituting, we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-1}})(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
& =(1-{{3}^{-2}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
\end{align}$
Similarly, in the above equation, $(1-{{3}^{-2}})(1+{{3}^{-2}})=(1-{{3}^{-4}})$
So, on substituting, we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-2}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-4}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
\end{align}$
The above process goes on and we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-{{2}^{n}}}})(1+{{3}^{-{{2}^{n}}}}) \\
& \Rightarrow (1-{{3}^{-1}}){{S}_{n}}=1-{{({{3}^{-{{2}^{n}}}})}^{2}} \\
& \Rightarrow (1-{{3}^{-1}}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
& \Rightarrow (1-\dfrac{1}{3}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
\end{align}$
On simplifying, we get
$\begin{align}
& (\dfrac{2}{3}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
& \Rightarrow {{S}_{n}}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{n+1}}}} \right) \\
\end{align}$
Then, for the sum of the infinite terms, substitute $n=\infty $, then we get
$\begin{align}
& {{S}_{n}}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{n+1}}}} \right) \\
& \Rightarrow {{S}_{\infty }}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{\infty +1}}}} \right) \\
& \Rightarrow {{S}_{\infty }}=\dfrac{3}{2}\left( 1-0 \right) \\
& \therefore {{S}_{\infty }}=\dfrac{3}{2} \\
\end{align}$
Thus, Option (C) is correct.
Note: Here we need to remember that, the given series is unable to explain its type of progression. So, we used simplifying method which is possible for the given series. So, by using simple formulae, we get the required sum to the infinite series.
Formula used: Some of the important formulae are:
$\begin{align}
& (a+b)(a-b)={{a}^{2}}-{{b}^{2}} \\
& (a+b)(a+b)={{(a+b)}^{2}} \\
& \Rightarrow {{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& (a-b)(a-b)={{(a-b)}^{2}} \\
& \Rightarrow {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}$
Complete step by step solution: Given series is
${{S}_{n}}=(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}})$
Where we have the last term
On multiplying both sides of the series by the conjugate of the first term we have from the given series is $(1-{{3}^{-1}})$
I.e.,
$(1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-1}})(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}})$
Since we know that,
$(a-b)(a+b)={{a}^{2}}-{{b}^{2}}$ we can write $(1-{{3}^{-1}})(1+{{3}^{-1}})=(1-{{3}^{-2}})$.
On substituting, we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-1}})(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
& =(1-{{3}^{-2}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
\end{align}$
Similarly, in the above equation, $(1-{{3}^{-2}})(1+{{3}^{-2}})=(1-{{3}^{-4}})$
So, on substituting, we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-2}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-4}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
\end{align}$
The above process goes on and we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-{{2}^{n}}}})(1+{{3}^{-{{2}^{n}}}}) \\
& \Rightarrow (1-{{3}^{-1}}){{S}_{n}}=1-{{({{3}^{-{{2}^{n}}}})}^{2}} \\
& \Rightarrow (1-{{3}^{-1}}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
& \Rightarrow (1-\dfrac{1}{3}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
\end{align}$
On simplifying, we get
$\begin{align}
& (\dfrac{2}{3}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
& \Rightarrow {{S}_{n}}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{n+1}}}} \right) \\
\end{align}$
Then, for the sum of the infinite terms, substitute $n=\infty $, then we get
$\begin{align}
& {{S}_{n}}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{n+1}}}} \right) \\
& \Rightarrow {{S}_{\infty }}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{\infty +1}}}} \right) \\
& \Rightarrow {{S}_{\infty }}=\dfrac{3}{2}\left( 1-0 \right) \\
& \therefore {{S}_{\infty }}=\dfrac{3}{2} \\
\end{align}$
Thus, Option (C) is correct.
Note: Here we need to remember that, the given series is unable to explain its type of progression. So, we used simplifying method which is possible for the given series. So, by using simple formulae, we get the required sum to the infinite series.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

