
If ${{S}_{n}}=(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}})$, then ${{S}_{\infty }}$ is equal to
A. $1$
B. $\dfrac{1}{2}$
C. $\dfrac{3}{2}$
D. None of these
Answer
162.9k+ views
Hint: In this question, we are to find the sum of the infinite series. Here we don’t know the type of the series. Then, we have another method to solve this series and to find the required sum. i.e., we can simplify the given expression, since the terms are related to one another. The simplification starts by multiplying the conjugate of the first term of the series on both sides. So, we can eliminate one of the terms from the series and it goes on till we get the required sum.
Formula used: Some of the important formulae are:
$\begin{align}
& (a+b)(a-b)={{a}^{2}}-{{b}^{2}} \\
& (a+b)(a+b)={{(a+b)}^{2}} \\
& \Rightarrow {{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& (a-b)(a-b)={{(a-b)}^{2}} \\
& \Rightarrow {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}$
Complete step by step solution: Given series is
${{S}_{n}}=(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}})$
Where we have the last term
On multiplying both sides of the series by the conjugate of the first term we have from the given series is $(1-{{3}^{-1}})$
I.e.,
$(1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-1}})(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}})$
Since we know that,
$(a-b)(a+b)={{a}^{2}}-{{b}^{2}}$ we can write $(1-{{3}^{-1}})(1+{{3}^{-1}})=(1-{{3}^{-2}})$.
On substituting, we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-1}})(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
& =(1-{{3}^{-2}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
\end{align}$
Similarly, in the above equation, $(1-{{3}^{-2}})(1+{{3}^{-2}})=(1-{{3}^{-4}})$
So, on substituting, we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-2}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-4}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
\end{align}$
The above process goes on and we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-{{2}^{n}}}})(1+{{3}^{-{{2}^{n}}}}) \\
& \Rightarrow (1-{{3}^{-1}}){{S}_{n}}=1-{{({{3}^{-{{2}^{n}}}})}^{2}} \\
& \Rightarrow (1-{{3}^{-1}}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
& \Rightarrow (1-\dfrac{1}{3}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
\end{align}$
On simplifying, we get
$\begin{align}
& (\dfrac{2}{3}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
& \Rightarrow {{S}_{n}}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{n+1}}}} \right) \\
\end{align}$
Then, for the sum of the infinite terms, substitute $n=\infty $, then we get
$\begin{align}
& {{S}_{n}}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{n+1}}}} \right) \\
& \Rightarrow {{S}_{\infty }}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{\infty +1}}}} \right) \\
& \Rightarrow {{S}_{\infty }}=\dfrac{3}{2}\left( 1-0 \right) \\
& \therefore {{S}_{\infty }}=\dfrac{3}{2} \\
\end{align}$
Thus, Option (C) is correct.
Note: Here we need to remember that, the given series is unable to explain its type of progression. So, we used simplifying method which is possible for the given series. So, by using simple formulae, we get the required sum to the infinite series.
Formula used: Some of the important formulae are:
$\begin{align}
& (a+b)(a-b)={{a}^{2}}-{{b}^{2}} \\
& (a+b)(a+b)={{(a+b)}^{2}} \\
& \Rightarrow {{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\
& (a-b)(a-b)={{(a-b)}^{2}} \\
& \Rightarrow {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
\end{align}$
Complete step by step solution: Given series is
${{S}_{n}}=(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}})$
Where we have the last term
On multiplying both sides of the series by the conjugate of the first term we have from the given series is $(1-{{3}^{-1}})$
I.e.,
$(1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-1}})(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}})$
Since we know that,
$(a-b)(a+b)={{a}^{2}}-{{b}^{2}}$ we can write $(1-{{3}^{-1}})(1+{{3}^{-1}})=(1-{{3}^{-2}})$.
On substituting, we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-1}})(1+{{3}^{-1}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
& =(1-{{3}^{-2}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
\end{align}$
Similarly, in the above equation, $(1-{{3}^{-2}})(1+{{3}^{-2}})=(1-{{3}^{-4}})$
So, on substituting, we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-2}})(1+{{3}^{-2}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-4}})(1+{{3}^{-4}})(1+{{3}^{-8}})....(1+{{3}^{-{{2}^{n}}}}) \\
\end{align}$
The above process goes on and we get
$\begin{align}
& (1-{{3}^{-1}}){{S}_{n}}=(1-{{3}^{-{{2}^{n}}}})(1+{{3}^{-{{2}^{n}}}}) \\
& \Rightarrow (1-{{3}^{-1}}){{S}_{n}}=1-{{({{3}^{-{{2}^{n}}}})}^{2}} \\
& \Rightarrow (1-{{3}^{-1}}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
& \Rightarrow (1-\dfrac{1}{3}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
\end{align}$
On simplifying, we get
$\begin{align}
& (\dfrac{2}{3}){{S}_{n}}=1-{{3}^{-{{2}^{n+1}}}} \\
& \Rightarrow {{S}_{n}}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{n+1}}}} \right) \\
\end{align}$
Then, for the sum of the infinite terms, substitute $n=\infty $, then we get
$\begin{align}
& {{S}_{n}}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{n+1}}}} \right) \\
& \Rightarrow {{S}_{\infty }}=\dfrac{3}{2}\left( 1-{{3}^{-{{2}^{\infty +1}}}} \right) \\
& \Rightarrow {{S}_{\infty }}=\dfrac{3}{2}\left( 1-0 \right) \\
& \therefore {{S}_{\infty }}=\dfrac{3}{2} \\
\end{align}$
Thus, Option (C) is correct.
Note: Here we need to remember that, the given series is unable to explain its type of progression. So, we used simplifying method which is possible for the given series. So, by using simple formulae, we get the required sum to the infinite series.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
