
If $\sin \theta +\cos \theta =1$ then the general value of $\theta $ is
A. \[2n\pi \]
B. \[n\pi +{{(-1)}^{n}}\frac{\pi }{4}-\frac{\pi }{4}\]
C. \[2n\pi +\frac{\pi }{2}\]
D. None of these.
Answer
218.1k+ views
Hint: To derive the general value of $\theta $, we will take the given equation and divide it by $\sqrt{2}$ on both sides. Then we will simplify it and rewrite it using trigonometric table values in a way to form of formula of $\sin (a+b)$.
Formula Used:$\sin (a+b)=\sin a\cos b+\cos a\sin b$
Complete step by step solution:We are given $\sin \theta +\cos \theta =1$ and we have to determine the value of $\theta $.
We will first take given equation $\sin \theta +\cos \theta =1$ and divide it by $\sqrt{2}$ on both sides.
$\begin{align}
& \frac{\sin \theta +\cos \theta }{\sqrt{2}}=\frac{1}{\sqrt{2}} \\
& \frac{\sin \theta }{\sqrt{2}}+\frac{\cos \theta }{\sqrt{2}}=\frac{1}{\sqrt{2}} \\
& \frac{1}{\sqrt{2}}\sin \theta +\frac{1}{\sqrt{2}}\cos \theta =\frac{1}{\sqrt{2}}
\end{align}$
As we know that $\sin \frac{\pi }{4}=\cos \frac{\pi }{4}=\frac{1}{\sqrt{2}}$, we will substitute this in the equation in a way to form the formula of $\sin (a+b)$.
$\begin{align}
& \frac{1}{\sqrt{2}}\sin \theta +\frac{1}{\sqrt{2}}\cos \theta =\frac{1}{\sqrt{2}} \\
& \sin \theta \cos \frac{\pi }{4}+\cos \theta \sin \frac{\pi }{4}=\frac{1}{\sqrt{2}} \\
& \sin \left( \frac{\pi }{4}+\theta \right)=\sin \frac{\pi }{4}
\end{align}$
As we know that if $\sin \theta =\sin \alpha $then $\theta =n\pi +{{(-1)}^{n}}\alpha $. So we will apply this in the equation,
$\begin{align}
& \theta +\frac{\pi }{4}=n\pi +{{(-1)}^{n}}\frac{\pi }{4} \\
& \theta =n\pi +{{(-1)}^{n}}\frac{\pi }{4}-\frac{\pi }{4}
\end{align}$
Option ‘B’ is correct
Note: The general solution of $\sin \theta =\sin \alpha $is $\theta =n\pi +{{(-1)}^{n}}\alpha $ where $n\in Z$. We will show how the value of $\theta $ is derived from $\sin \theta =\sin \alpha $.
$\begin{align}
& \sin \theta =\sin \alpha \\
& \sin \theta -\sin \alpha =0
\end{align}$
Now we will use the formula $\sin C-\sin D=2\sin \frac{C-D}{2}\cos \frac{C+D}{2}$.
$\begin{align}
& \sin \theta -\sin \alpha =0 \\
& 2\sin \frac{\theta -\alpha }{2}\cos \frac{\theta +\alpha }{2}=0 \\
& \sin \frac{\theta -\alpha }{2}\cos \frac{\theta +\alpha }{2}=0
\end{align}$
Now,
$\sin \frac{\theta -\alpha }{2}=0$ or $\cos \frac{\theta +\alpha }{2}=0$
$\frac{\theta -\alpha }{2}=m\pi $ or $\frac{\theta +\alpha }{2}=(2m+1)\frac{\pi }{2}$
We will now derive the value of $\theta $ for both.
First we will take,
$\frac{\theta -\alpha }{2}=m\pi $
$\theta =2m\pi +\alpha \,\,,m\in Z$. It means that value of $\theta $ will be any even multiple of $\pi $ in addition of another angle$\alpha $.
Now $\frac{\theta +\alpha }{2}=(2m+1)\frac{\pi }{2}$,
$\theta =(2m+1)\pi +\alpha \,\,\,,m\in Z$. It means that value of $\theta $ will be any odd multiple of $\pi $ with another angle$\alpha $subtracted from it.
We will now combine both the value of the angle $\theta $,
$\theta =n\pi +{{(-1)}^{n}}\alpha $, where $n\in Z$.
Formula Used:$\sin (a+b)=\sin a\cos b+\cos a\sin b$
Complete step by step solution:We are given $\sin \theta +\cos \theta =1$ and we have to determine the value of $\theta $.
We will first take given equation $\sin \theta +\cos \theta =1$ and divide it by $\sqrt{2}$ on both sides.
$\begin{align}
& \frac{\sin \theta +\cos \theta }{\sqrt{2}}=\frac{1}{\sqrt{2}} \\
& \frac{\sin \theta }{\sqrt{2}}+\frac{\cos \theta }{\sqrt{2}}=\frac{1}{\sqrt{2}} \\
& \frac{1}{\sqrt{2}}\sin \theta +\frac{1}{\sqrt{2}}\cos \theta =\frac{1}{\sqrt{2}}
\end{align}$
As we know that $\sin \frac{\pi }{4}=\cos \frac{\pi }{4}=\frac{1}{\sqrt{2}}$, we will substitute this in the equation in a way to form the formula of $\sin (a+b)$.
$\begin{align}
& \frac{1}{\sqrt{2}}\sin \theta +\frac{1}{\sqrt{2}}\cos \theta =\frac{1}{\sqrt{2}} \\
& \sin \theta \cos \frac{\pi }{4}+\cos \theta \sin \frac{\pi }{4}=\frac{1}{\sqrt{2}} \\
& \sin \left( \frac{\pi }{4}+\theta \right)=\sin \frac{\pi }{4}
\end{align}$
As we know that if $\sin \theta =\sin \alpha $then $\theta =n\pi +{{(-1)}^{n}}\alpha $. So we will apply this in the equation,
$\begin{align}
& \theta +\frac{\pi }{4}=n\pi +{{(-1)}^{n}}\frac{\pi }{4} \\
& \theta =n\pi +{{(-1)}^{n}}\frac{\pi }{4}-\frac{\pi }{4}
\end{align}$
Option ‘B’ is correct
Note: The general solution of $\sin \theta =\sin \alpha $is $\theta =n\pi +{{(-1)}^{n}}\alpha $ where $n\in Z$. We will show how the value of $\theta $ is derived from $\sin \theta =\sin \alpha $.
$\begin{align}
& \sin \theta =\sin \alpha \\
& \sin \theta -\sin \alpha =0
\end{align}$
Now we will use the formula $\sin C-\sin D=2\sin \frac{C-D}{2}\cos \frac{C+D}{2}$.
$\begin{align}
& \sin \theta -\sin \alpha =0 \\
& 2\sin \frac{\theta -\alpha }{2}\cos \frac{\theta +\alpha }{2}=0 \\
& \sin \frac{\theta -\alpha }{2}\cos \frac{\theta +\alpha }{2}=0
\end{align}$
Now,
$\sin \frac{\theta -\alpha }{2}=0$ or $\cos \frac{\theta +\alpha }{2}=0$
$\frac{\theta -\alpha }{2}=m\pi $ or $\frac{\theta +\alpha }{2}=(2m+1)\frac{\pi }{2}$
We will now derive the value of $\theta $ for both.
First we will take,
$\frac{\theta -\alpha }{2}=m\pi $
$\theta =2m\pi +\alpha \,\,,m\in Z$. It means that value of $\theta $ will be any even multiple of $\pi $ in addition of another angle$\alpha $.
Now $\frac{\theta +\alpha }{2}=(2m+1)\frac{\pi }{2}$,
$\theta =(2m+1)\pi +\alpha \,\,\,,m\in Z$. It means that value of $\theta $ will be any odd multiple of $\pi $ with another angle$\alpha $subtracted from it.
We will now combine both the value of the angle $\theta $,
$\theta =n\pi +{{(-1)}^{n}}\alpha $, where $n\in Z$.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

