
If $\sin \theta +\cos \theta =1$ then the general value of $\theta $ is
A. \[2n\pi \]
B. \[n\pi +{{(-1)}^{n}}\frac{\pi }{4}-\frac{\pi }{4}\]
C. \[2n\pi +\frac{\pi }{2}\]
D. None of these.
Answer
162.3k+ views
Hint: To derive the general value of $\theta $, we will take the given equation and divide it by $\sqrt{2}$ on both sides. Then we will simplify it and rewrite it using trigonometric table values in a way to form of formula of $\sin (a+b)$.
Formula Used:$\sin (a+b)=\sin a\cos b+\cos a\sin b$
Complete step by step solution:We are given $\sin \theta +\cos \theta =1$ and we have to determine the value of $\theta $.
We will first take given equation $\sin \theta +\cos \theta =1$ and divide it by $\sqrt{2}$ on both sides.
$\begin{align}
& \frac{\sin \theta +\cos \theta }{\sqrt{2}}=\frac{1}{\sqrt{2}} \\
& \frac{\sin \theta }{\sqrt{2}}+\frac{\cos \theta }{\sqrt{2}}=\frac{1}{\sqrt{2}} \\
& \frac{1}{\sqrt{2}}\sin \theta +\frac{1}{\sqrt{2}}\cos \theta =\frac{1}{\sqrt{2}}
\end{align}$
As we know that $\sin \frac{\pi }{4}=\cos \frac{\pi }{4}=\frac{1}{\sqrt{2}}$, we will substitute this in the equation in a way to form the formula of $\sin (a+b)$.
$\begin{align}
& \frac{1}{\sqrt{2}}\sin \theta +\frac{1}{\sqrt{2}}\cos \theta =\frac{1}{\sqrt{2}} \\
& \sin \theta \cos \frac{\pi }{4}+\cos \theta \sin \frac{\pi }{4}=\frac{1}{\sqrt{2}} \\
& \sin \left( \frac{\pi }{4}+\theta \right)=\sin \frac{\pi }{4}
\end{align}$
As we know that if $\sin \theta =\sin \alpha $then $\theta =n\pi +{{(-1)}^{n}}\alpha $. So we will apply this in the equation,
$\begin{align}
& \theta +\frac{\pi }{4}=n\pi +{{(-1)}^{n}}\frac{\pi }{4} \\
& \theta =n\pi +{{(-1)}^{n}}\frac{\pi }{4}-\frac{\pi }{4}
\end{align}$
Option ‘B’ is correct
Note: The general solution of $\sin \theta =\sin \alpha $is $\theta =n\pi +{{(-1)}^{n}}\alpha $ where $n\in Z$. We will show how the value of $\theta $ is derived from $\sin \theta =\sin \alpha $.
$\begin{align}
& \sin \theta =\sin \alpha \\
& \sin \theta -\sin \alpha =0
\end{align}$
Now we will use the formula $\sin C-\sin D=2\sin \frac{C-D}{2}\cos \frac{C+D}{2}$.
$\begin{align}
& \sin \theta -\sin \alpha =0 \\
& 2\sin \frac{\theta -\alpha }{2}\cos \frac{\theta +\alpha }{2}=0 \\
& \sin \frac{\theta -\alpha }{2}\cos \frac{\theta +\alpha }{2}=0
\end{align}$
Now,
$\sin \frac{\theta -\alpha }{2}=0$ or $\cos \frac{\theta +\alpha }{2}=0$
$\frac{\theta -\alpha }{2}=m\pi $ or $\frac{\theta +\alpha }{2}=(2m+1)\frac{\pi }{2}$
We will now derive the value of $\theta $ for both.
First we will take,
$\frac{\theta -\alpha }{2}=m\pi $
$\theta =2m\pi +\alpha \,\,,m\in Z$. It means that value of $\theta $ will be any even multiple of $\pi $ in addition of another angle$\alpha $.
Now $\frac{\theta +\alpha }{2}=(2m+1)\frac{\pi }{2}$,
$\theta =(2m+1)\pi +\alpha \,\,\,,m\in Z$. It means that value of $\theta $ will be any odd multiple of $\pi $ with another angle$\alpha $subtracted from it.
We will now combine both the value of the angle $\theta $,
$\theta =n\pi +{{(-1)}^{n}}\alpha $, where $n\in Z$.
Formula Used:$\sin (a+b)=\sin a\cos b+\cos a\sin b$
Complete step by step solution:We are given $\sin \theta +\cos \theta =1$ and we have to determine the value of $\theta $.
We will first take given equation $\sin \theta +\cos \theta =1$ and divide it by $\sqrt{2}$ on both sides.
$\begin{align}
& \frac{\sin \theta +\cos \theta }{\sqrt{2}}=\frac{1}{\sqrt{2}} \\
& \frac{\sin \theta }{\sqrt{2}}+\frac{\cos \theta }{\sqrt{2}}=\frac{1}{\sqrt{2}} \\
& \frac{1}{\sqrt{2}}\sin \theta +\frac{1}{\sqrt{2}}\cos \theta =\frac{1}{\sqrt{2}}
\end{align}$
As we know that $\sin \frac{\pi }{4}=\cos \frac{\pi }{4}=\frac{1}{\sqrt{2}}$, we will substitute this in the equation in a way to form the formula of $\sin (a+b)$.
$\begin{align}
& \frac{1}{\sqrt{2}}\sin \theta +\frac{1}{\sqrt{2}}\cos \theta =\frac{1}{\sqrt{2}} \\
& \sin \theta \cos \frac{\pi }{4}+\cos \theta \sin \frac{\pi }{4}=\frac{1}{\sqrt{2}} \\
& \sin \left( \frac{\pi }{4}+\theta \right)=\sin \frac{\pi }{4}
\end{align}$
As we know that if $\sin \theta =\sin \alpha $then $\theta =n\pi +{{(-1)}^{n}}\alpha $. So we will apply this in the equation,
$\begin{align}
& \theta +\frac{\pi }{4}=n\pi +{{(-1)}^{n}}\frac{\pi }{4} \\
& \theta =n\pi +{{(-1)}^{n}}\frac{\pi }{4}-\frac{\pi }{4}
\end{align}$
Option ‘B’ is correct
Note: The general solution of $\sin \theta =\sin \alpha $is $\theta =n\pi +{{(-1)}^{n}}\alpha $ where $n\in Z$. We will show how the value of $\theta $ is derived from $\sin \theta =\sin \alpha $.
$\begin{align}
& \sin \theta =\sin \alpha \\
& \sin \theta -\sin \alpha =0
\end{align}$
Now we will use the formula $\sin C-\sin D=2\sin \frac{C-D}{2}\cos \frac{C+D}{2}$.
$\begin{align}
& \sin \theta -\sin \alpha =0 \\
& 2\sin \frac{\theta -\alpha }{2}\cos \frac{\theta +\alpha }{2}=0 \\
& \sin \frac{\theta -\alpha }{2}\cos \frac{\theta +\alpha }{2}=0
\end{align}$
Now,
$\sin \frac{\theta -\alpha }{2}=0$ or $\cos \frac{\theta +\alpha }{2}=0$
$\frac{\theta -\alpha }{2}=m\pi $ or $\frac{\theta +\alpha }{2}=(2m+1)\frac{\pi }{2}$
We will now derive the value of $\theta $ for both.
First we will take,
$\frac{\theta -\alpha }{2}=m\pi $
$\theta =2m\pi +\alpha \,\,,m\in Z$. It means that value of $\theta $ will be any even multiple of $\pi $ in addition of another angle$\alpha $.
Now $\frac{\theta +\alpha }{2}=(2m+1)\frac{\pi }{2}$,
$\theta =(2m+1)\pi +\alpha \,\,\,,m\in Z$. It means that value of $\theta $ will be any odd multiple of $\pi $ with another angle$\alpha $subtracted from it.
We will now combine both the value of the angle $\theta $,
$\theta =n\pi +{{(-1)}^{n}}\alpha $, where $n\in Z$.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
