
If $\sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha )$ then $x=$.
A. \[n\pi \pm \dfrac{\pi }{6}\]
B. \[n\pi \pm \dfrac{\pi }{3}\]
C. \[n\pi \pm \dfrac{\pi }{4}\]
D. \[n\pi \pm \dfrac{\pi }{2}\]
Answer
218.7k+ views
Hint: To find the value of $x$ we will use the formula of $\sin 3A$ and identity of $\sin (A+B)\sin (A-B)$in the given equation. We will then simplify the equation and derive an equation where we will apply the theorem according to which for all the real numbers $x$ and $y$, $\sin x=\sin y$ implies that $x=n\pi \pm y$ where $n$ is an integer.
Formula Used: $\sin 3A=3\sin A-4{{\sin }^{3}}A$
$\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$
Complete step by step solution: Complete step-by-step solution:
We are given a trigonometric equation $\sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha )$ and we have to determine the value of $x$.
We will use the formula of $\sin 3A$ in the equation.
$\begin{align}
& \sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha ) \\
& 3\sin \alpha -4{{\sin }^{3}}\alpha =4\sin \alpha \left[ \sin (x+\alpha )\sin (x-\alpha ) \right]
\end{align}$
Now as we know that $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$, we will use this in the equation.
$\begin{align}
& 3\sin \alpha -4{{\sin }^{3}}\alpha =4\sin \alpha \left[ {{\sin }^{2}}x-{{\sin }^{2}}\alpha \right] \\
& \sin \alpha (3-4{{\sin }^{2}}\alpha )=4\sin \alpha \left[ {{\sin }^{2}}x-{{\sin }^{2}}\alpha \right] \\
& 3-4{{\sin }^{2}}\alpha =4{{\sin }^{2}}x-4{{\sin }^{2}}\alpha \\
& 3=4{{\sin }^{2}}x \\
& {{\sin }^{2}}x=\dfrac{3}{4} \\
& \sin x=\pm \dfrac{\sqrt{3}}{2}
\end{align}$
We know that $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$. SO,
$\sin x=\sin \left( \pm \dfrac{\pi }{3} \right)$
Applying the theorem here we will get,
$x=n\pi \pm \dfrac{\pi }{3}$, here $n\in Z$.
The value of $x$ for the trigonometric equation $\sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha )$ is $x=n\pi \pm \dfrac{\pi }{3}$
Option ‘B’ is correct
Note: We have used the formula or identity $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$ directly in the question. This identity is derived from the formula of $\sin (a+b)=\sin a\cos b+\cos a\sin b$ and $\sin (a-b)=\sin a\cos b-\cos a\sin b$. So instead of using $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$ directly, we can also derive the equation by using these formulas.
Here we will show.
$\sin (x+\alpha )\sin (x-\alpha )=\left[ \sin x\cos \alpha +\cos x\sin \alpha \right]\left[ \sin x\cos \alpha -\cos x\sin \alpha \right]$
Using formula of $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$,
\[\sin (x+\alpha )\sin (x-\alpha )={{\sin }^{2}}x{{\cos }^{2}}\alpha -{{\cos }^{2}}x{{\sin }^{2}}\alpha \]
We will now use the formula ${{\cos }^{2}}x=1-{{\sin }^{2}}x$ in the above equation.
\[\begin{align}
& \sin (x+\alpha )\sin (x-\alpha )={{\sin }^{2}}x\left( 1-{{\sin }^{2}}\alpha \right)-\left( 1-{{\sin }^{2}}x \right){{\sin }^{2}}\alpha \\
& ={{\sin }^{2}}x-{{\sin }^{2}}x{{\sin }^{2}}\alpha -{{\sin }^{2}}\alpha +{{\sin }^{2}}x{{\sin }^{2}}\alpha \\
& ={{\sin }^{2}}x-{{\sin }^{2}}\alpha
\end{align}\]
In this question we used the triple angle formulas and trigonometric identities to find the value of angle so we must keep all these in mind and how to use it. With this we have to also remember the theorem of general solutions and trigonometric table of values of all the functions at each and every angle with their domain, range, period interval and all the important characteristics.
Formula Used: $\sin 3A=3\sin A-4{{\sin }^{3}}A$
$\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$
Complete step by step solution: Complete step-by-step solution:
We are given a trigonometric equation $\sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha )$ and we have to determine the value of $x$.
We will use the formula of $\sin 3A$ in the equation.
$\begin{align}
& \sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha ) \\
& 3\sin \alpha -4{{\sin }^{3}}\alpha =4\sin \alpha \left[ \sin (x+\alpha )\sin (x-\alpha ) \right]
\end{align}$
Now as we know that $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$, we will use this in the equation.
$\begin{align}
& 3\sin \alpha -4{{\sin }^{3}}\alpha =4\sin \alpha \left[ {{\sin }^{2}}x-{{\sin }^{2}}\alpha \right] \\
& \sin \alpha (3-4{{\sin }^{2}}\alpha )=4\sin \alpha \left[ {{\sin }^{2}}x-{{\sin }^{2}}\alpha \right] \\
& 3-4{{\sin }^{2}}\alpha =4{{\sin }^{2}}x-4{{\sin }^{2}}\alpha \\
& 3=4{{\sin }^{2}}x \\
& {{\sin }^{2}}x=\dfrac{3}{4} \\
& \sin x=\pm \dfrac{\sqrt{3}}{2}
\end{align}$
We know that $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$. SO,
$\sin x=\sin \left( \pm \dfrac{\pi }{3} \right)$
Applying the theorem here we will get,
$x=n\pi \pm \dfrac{\pi }{3}$, here $n\in Z$.
The value of $x$ for the trigonometric equation $\sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha )$ is $x=n\pi \pm \dfrac{\pi }{3}$
Option ‘B’ is correct
Note: We have used the formula or identity $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$ directly in the question. This identity is derived from the formula of $\sin (a+b)=\sin a\cos b+\cos a\sin b$ and $\sin (a-b)=\sin a\cos b-\cos a\sin b$. So instead of using $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$ directly, we can also derive the equation by using these formulas.
Here we will show.
$\sin (x+\alpha )\sin (x-\alpha )=\left[ \sin x\cos \alpha +\cos x\sin \alpha \right]\left[ \sin x\cos \alpha -\cos x\sin \alpha \right]$
Using formula of $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$,
\[\sin (x+\alpha )\sin (x-\alpha )={{\sin }^{2}}x{{\cos }^{2}}\alpha -{{\cos }^{2}}x{{\sin }^{2}}\alpha \]
We will now use the formula ${{\cos }^{2}}x=1-{{\sin }^{2}}x$ in the above equation.
\[\begin{align}
& \sin (x+\alpha )\sin (x-\alpha )={{\sin }^{2}}x\left( 1-{{\sin }^{2}}\alpha \right)-\left( 1-{{\sin }^{2}}x \right){{\sin }^{2}}\alpha \\
& ={{\sin }^{2}}x-{{\sin }^{2}}x{{\sin }^{2}}\alpha -{{\sin }^{2}}\alpha +{{\sin }^{2}}x{{\sin }^{2}}\alpha \\
& ={{\sin }^{2}}x-{{\sin }^{2}}\alpha
\end{align}\]
In this question we used the triple angle formulas and trigonometric identities to find the value of angle so we must keep all these in mind and how to use it. With this we have to also remember the theorem of general solutions and trigonometric table of values of all the functions at each and every angle with their domain, range, period interval and all the important characteristics.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

