
If $\sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha )$ then $x=$.
A. \[n\pi \pm \dfrac{\pi }{6}\]
B. \[n\pi \pm \dfrac{\pi }{3}\]
C. \[n\pi \pm \dfrac{\pi }{4}\]
D. \[n\pi \pm \dfrac{\pi }{2}\]
Answer
161.1k+ views
Hint: To find the value of $x$ we will use the formula of $\sin 3A$ and identity of $\sin (A+B)\sin (A-B)$in the given equation. We will then simplify the equation and derive an equation where we will apply the theorem according to which for all the real numbers $x$ and $y$, $\sin x=\sin y$ implies that $x=n\pi \pm y$ where $n$ is an integer.
Formula Used: $\sin 3A=3\sin A-4{{\sin }^{3}}A$
$\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$
Complete step by step solution: Complete step-by-step solution:
We are given a trigonometric equation $\sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha )$ and we have to determine the value of $x$.
We will use the formula of $\sin 3A$ in the equation.
$\begin{align}
& \sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha ) \\
& 3\sin \alpha -4{{\sin }^{3}}\alpha =4\sin \alpha \left[ \sin (x+\alpha )\sin (x-\alpha ) \right]
\end{align}$
Now as we know that $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$, we will use this in the equation.
$\begin{align}
& 3\sin \alpha -4{{\sin }^{3}}\alpha =4\sin \alpha \left[ {{\sin }^{2}}x-{{\sin }^{2}}\alpha \right] \\
& \sin \alpha (3-4{{\sin }^{2}}\alpha )=4\sin \alpha \left[ {{\sin }^{2}}x-{{\sin }^{2}}\alpha \right] \\
& 3-4{{\sin }^{2}}\alpha =4{{\sin }^{2}}x-4{{\sin }^{2}}\alpha \\
& 3=4{{\sin }^{2}}x \\
& {{\sin }^{2}}x=\dfrac{3}{4} \\
& \sin x=\pm \dfrac{\sqrt{3}}{2}
\end{align}$
We know that $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$. SO,
$\sin x=\sin \left( \pm \dfrac{\pi }{3} \right)$
Applying the theorem here we will get,
$x=n\pi \pm \dfrac{\pi }{3}$, here $n\in Z$.
The value of $x$ for the trigonometric equation $\sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha )$ is $x=n\pi \pm \dfrac{\pi }{3}$
Option ‘B’ is correct
Note: We have used the formula or identity $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$ directly in the question. This identity is derived from the formula of $\sin (a+b)=\sin a\cos b+\cos a\sin b$ and $\sin (a-b)=\sin a\cos b-\cos a\sin b$. So instead of using $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$ directly, we can also derive the equation by using these formulas.
Here we will show.
$\sin (x+\alpha )\sin (x-\alpha )=\left[ \sin x\cos \alpha +\cos x\sin \alpha \right]\left[ \sin x\cos \alpha -\cos x\sin \alpha \right]$
Using formula of $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$,
\[\sin (x+\alpha )\sin (x-\alpha )={{\sin }^{2}}x{{\cos }^{2}}\alpha -{{\cos }^{2}}x{{\sin }^{2}}\alpha \]
We will now use the formula ${{\cos }^{2}}x=1-{{\sin }^{2}}x$ in the above equation.
\[\begin{align}
& \sin (x+\alpha )\sin (x-\alpha )={{\sin }^{2}}x\left( 1-{{\sin }^{2}}\alpha \right)-\left( 1-{{\sin }^{2}}x \right){{\sin }^{2}}\alpha \\
& ={{\sin }^{2}}x-{{\sin }^{2}}x{{\sin }^{2}}\alpha -{{\sin }^{2}}\alpha +{{\sin }^{2}}x{{\sin }^{2}}\alpha \\
& ={{\sin }^{2}}x-{{\sin }^{2}}\alpha
\end{align}\]
In this question we used the triple angle formulas and trigonometric identities to find the value of angle so we must keep all these in mind and how to use it. With this we have to also remember the theorem of general solutions and trigonometric table of values of all the functions at each and every angle with their domain, range, period interval and all the important characteristics.
Formula Used: $\sin 3A=3\sin A-4{{\sin }^{3}}A$
$\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$
Complete step by step solution: Complete step-by-step solution:
We are given a trigonometric equation $\sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha )$ and we have to determine the value of $x$.
We will use the formula of $\sin 3A$ in the equation.
$\begin{align}
& \sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha ) \\
& 3\sin \alpha -4{{\sin }^{3}}\alpha =4\sin \alpha \left[ \sin (x+\alpha )\sin (x-\alpha ) \right]
\end{align}$
Now as we know that $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$, we will use this in the equation.
$\begin{align}
& 3\sin \alpha -4{{\sin }^{3}}\alpha =4\sin \alpha \left[ {{\sin }^{2}}x-{{\sin }^{2}}\alpha \right] \\
& \sin \alpha (3-4{{\sin }^{2}}\alpha )=4\sin \alpha \left[ {{\sin }^{2}}x-{{\sin }^{2}}\alpha \right] \\
& 3-4{{\sin }^{2}}\alpha =4{{\sin }^{2}}x-4{{\sin }^{2}}\alpha \\
& 3=4{{\sin }^{2}}x \\
& {{\sin }^{2}}x=\dfrac{3}{4} \\
& \sin x=\pm \dfrac{\sqrt{3}}{2}
\end{align}$
We know that $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$. SO,
$\sin x=\sin \left( \pm \dfrac{\pi }{3} \right)$
Applying the theorem here we will get,
$x=n\pi \pm \dfrac{\pi }{3}$, here $n\in Z$.
The value of $x$ for the trigonometric equation $\sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha )$ is $x=n\pi \pm \dfrac{\pi }{3}$
Option ‘B’ is correct
Note: We have used the formula or identity $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$ directly in the question. This identity is derived from the formula of $\sin (a+b)=\sin a\cos b+\cos a\sin b$ and $\sin (a-b)=\sin a\cos b-\cos a\sin b$. So instead of using $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$ directly, we can also derive the equation by using these formulas.
Here we will show.
$\sin (x+\alpha )\sin (x-\alpha )=\left[ \sin x\cos \alpha +\cos x\sin \alpha \right]\left[ \sin x\cos \alpha -\cos x\sin \alpha \right]$
Using formula of $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$,
\[\sin (x+\alpha )\sin (x-\alpha )={{\sin }^{2}}x{{\cos }^{2}}\alpha -{{\cos }^{2}}x{{\sin }^{2}}\alpha \]
We will now use the formula ${{\cos }^{2}}x=1-{{\sin }^{2}}x$ in the above equation.
\[\begin{align}
& \sin (x+\alpha )\sin (x-\alpha )={{\sin }^{2}}x\left( 1-{{\sin }^{2}}\alpha \right)-\left( 1-{{\sin }^{2}}x \right){{\sin }^{2}}\alpha \\
& ={{\sin }^{2}}x-{{\sin }^{2}}x{{\sin }^{2}}\alpha -{{\sin }^{2}}\alpha +{{\sin }^{2}}x{{\sin }^{2}}\alpha \\
& ={{\sin }^{2}}x-{{\sin }^{2}}\alpha
\end{align}\]
In this question we used the triple angle formulas and trigonometric identities to find the value of angle so we must keep all these in mind and how to use it. With this we have to also remember the theorem of general solutions and trigonometric table of values of all the functions at each and every angle with their domain, range, period interval and all the important characteristics.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
