
If $\sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha )$ then $x=$.
A. \[n\pi \pm \dfrac{\pi }{6}\]
B. \[n\pi \pm \dfrac{\pi }{3}\]
C. \[n\pi \pm \dfrac{\pi }{4}\]
D. \[n\pi \pm \dfrac{\pi }{2}\]
Answer
232.8k+ views
Hint: To find the value of $x$ we will use the formula of $\sin 3A$ and identity of $\sin (A+B)\sin (A-B)$in the given equation. We will then simplify the equation and derive an equation where we will apply the theorem according to which for all the real numbers $x$ and $y$, $\sin x=\sin y$ implies that $x=n\pi \pm y$ where $n$ is an integer.
Formula Used: $\sin 3A=3\sin A-4{{\sin }^{3}}A$
$\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$
Complete step by step solution: Complete step-by-step solution:
We are given a trigonometric equation $\sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha )$ and we have to determine the value of $x$.
We will use the formula of $\sin 3A$ in the equation.
$\begin{align}
& \sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha ) \\
& 3\sin \alpha -4{{\sin }^{3}}\alpha =4\sin \alpha \left[ \sin (x+\alpha )\sin (x-\alpha ) \right]
\end{align}$
Now as we know that $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$, we will use this in the equation.
$\begin{align}
& 3\sin \alpha -4{{\sin }^{3}}\alpha =4\sin \alpha \left[ {{\sin }^{2}}x-{{\sin }^{2}}\alpha \right] \\
& \sin \alpha (3-4{{\sin }^{2}}\alpha )=4\sin \alpha \left[ {{\sin }^{2}}x-{{\sin }^{2}}\alpha \right] \\
& 3-4{{\sin }^{2}}\alpha =4{{\sin }^{2}}x-4{{\sin }^{2}}\alpha \\
& 3=4{{\sin }^{2}}x \\
& {{\sin }^{2}}x=\dfrac{3}{4} \\
& \sin x=\pm \dfrac{\sqrt{3}}{2}
\end{align}$
We know that $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$. SO,
$\sin x=\sin \left( \pm \dfrac{\pi }{3} \right)$
Applying the theorem here we will get,
$x=n\pi \pm \dfrac{\pi }{3}$, here $n\in Z$.
The value of $x$ for the trigonometric equation $\sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha )$ is $x=n\pi \pm \dfrac{\pi }{3}$
Option ‘B’ is correct
Note: We have used the formula or identity $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$ directly in the question. This identity is derived from the formula of $\sin (a+b)=\sin a\cos b+\cos a\sin b$ and $\sin (a-b)=\sin a\cos b-\cos a\sin b$. So instead of using $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$ directly, we can also derive the equation by using these formulas.
Here we will show.
$\sin (x+\alpha )\sin (x-\alpha )=\left[ \sin x\cos \alpha +\cos x\sin \alpha \right]\left[ \sin x\cos \alpha -\cos x\sin \alpha \right]$
Using formula of $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$,
\[\sin (x+\alpha )\sin (x-\alpha )={{\sin }^{2}}x{{\cos }^{2}}\alpha -{{\cos }^{2}}x{{\sin }^{2}}\alpha \]
We will now use the formula ${{\cos }^{2}}x=1-{{\sin }^{2}}x$ in the above equation.
\[\begin{align}
& \sin (x+\alpha )\sin (x-\alpha )={{\sin }^{2}}x\left( 1-{{\sin }^{2}}\alpha \right)-\left( 1-{{\sin }^{2}}x \right){{\sin }^{2}}\alpha \\
& ={{\sin }^{2}}x-{{\sin }^{2}}x{{\sin }^{2}}\alpha -{{\sin }^{2}}\alpha +{{\sin }^{2}}x{{\sin }^{2}}\alpha \\
& ={{\sin }^{2}}x-{{\sin }^{2}}\alpha
\end{align}\]
In this question we used the triple angle formulas and trigonometric identities to find the value of angle so we must keep all these in mind and how to use it. With this we have to also remember the theorem of general solutions and trigonometric table of values of all the functions at each and every angle with their domain, range, period interval and all the important characteristics.
Formula Used: $\sin 3A=3\sin A-4{{\sin }^{3}}A$
$\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$
Complete step by step solution: Complete step-by-step solution:
We are given a trigonometric equation $\sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha )$ and we have to determine the value of $x$.
We will use the formula of $\sin 3A$ in the equation.
$\begin{align}
& \sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha ) \\
& 3\sin \alpha -4{{\sin }^{3}}\alpha =4\sin \alpha \left[ \sin (x+\alpha )\sin (x-\alpha ) \right]
\end{align}$
Now as we know that $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$, we will use this in the equation.
$\begin{align}
& 3\sin \alpha -4{{\sin }^{3}}\alpha =4\sin \alpha \left[ {{\sin }^{2}}x-{{\sin }^{2}}\alpha \right] \\
& \sin \alpha (3-4{{\sin }^{2}}\alpha )=4\sin \alpha \left[ {{\sin }^{2}}x-{{\sin }^{2}}\alpha \right] \\
& 3-4{{\sin }^{2}}\alpha =4{{\sin }^{2}}x-4{{\sin }^{2}}\alpha \\
& 3=4{{\sin }^{2}}x \\
& {{\sin }^{2}}x=\dfrac{3}{4} \\
& \sin x=\pm \dfrac{\sqrt{3}}{2}
\end{align}$
We know that $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$. SO,
$\sin x=\sin \left( \pm \dfrac{\pi }{3} \right)$
Applying the theorem here we will get,
$x=n\pi \pm \dfrac{\pi }{3}$, here $n\in Z$.
The value of $x$ for the trigonometric equation $\sin 3\alpha =4\sin \alpha \sin (x+\alpha )\sin (x-\alpha )$ is $x=n\pi \pm \dfrac{\pi }{3}$
Option ‘B’ is correct
Note: We have used the formula or identity $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$ directly in the question. This identity is derived from the formula of $\sin (a+b)=\sin a\cos b+\cos a\sin b$ and $\sin (a-b)=\sin a\cos b-\cos a\sin b$. So instead of using $\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B$ directly, we can also derive the equation by using these formulas.
Here we will show.
$\sin (x+\alpha )\sin (x-\alpha )=\left[ \sin x\cos \alpha +\cos x\sin \alpha \right]\left[ \sin x\cos \alpha -\cos x\sin \alpha \right]$
Using formula of $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$,
\[\sin (x+\alpha )\sin (x-\alpha )={{\sin }^{2}}x{{\cos }^{2}}\alpha -{{\cos }^{2}}x{{\sin }^{2}}\alpha \]
We will now use the formula ${{\cos }^{2}}x=1-{{\sin }^{2}}x$ in the above equation.
\[\begin{align}
& \sin (x+\alpha )\sin (x-\alpha )={{\sin }^{2}}x\left( 1-{{\sin }^{2}}\alpha \right)-\left( 1-{{\sin }^{2}}x \right){{\sin }^{2}}\alpha \\
& ={{\sin }^{2}}x-{{\sin }^{2}}x{{\sin }^{2}}\alpha -{{\sin }^{2}}\alpha +{{\sin }^{2}}x{{\sin }^{2}}\alpha \\
& ={{\sin }^{2}}x-{{\sin }^{2}}\alpha
\end{align}\]
In this question we used the triple angle formulas and trigonometric identities to find the value of angle so we must keep all these in mind and how to use it. With this we have to also remember the theorem of general solutions and trigonometric table of values of all the functions at each and every angle with their domain, range, period interval and all the important characteristics.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

JEE Main 2026 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

