
If ${\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{12}}{{13}}} \right) = {\sin ^{ - 1}}\left( C \right)$, then $C = $
1. $\dfrac{{65}}{{56}}$
2. $\dfrac{{24}}{{65}}$
3. $\dfrac{{16}}{{65}}$
4. $\dfrac{{56}}{{65}}$
Answer
232.8k+ views
Hint: Here, in the given question, we are given an equation of inverse trigonometric functions and we need to find the value of $C$. At first, we will convert the inverse function of $\cos $ into inverse function of $\sin $ using ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ identity.
Formula used:
We will apply ${{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\left\{ x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right\}$ identity to get the value of $C$.
Complete step by step solution:
Given that, ${{\sin }^{-1}}\left( \frac{3}{5} \right)+{{\cos }^{-1}}\left( \frac{12}{13} \right)={{\sin }^{-1}}\left( C \right)$
Let us first convert ${{\cos }^{-1}}$ function into ${{\sin }^{-1}}$
The inverse functions of the fundamental trigonometric functions are known as inverse trigonometric functions. $\sin ^{-1} x=\theta$ is a possible conversion for the fundamental trigonometric function$x$. In this case, $x$ can be expressed as a whole number, a decimal, a fraction, or an exponent. We have $(1 / 2)$ for $\theta=30^{\circ}$, where is a number between $0^{\circ}$and $90^{\circ}$. Inverse trigonometric function formulas can be created from any trigonometric formula.
Let $A={{\cos }^{-1}}\left( \frac{12}{13} \right)$
$\Rightarrow {{\sin }^{-1}}\left( \frac{3}{5} \right)+A={{\sin }^{-1}}\left( C \right)\,\,\,\,\,.......\left( i \right)$
We have, $A={{\cos }^{-1}}\left( \frac{12}{13} \right)$
$\Rightarrow \cos A=\frac{12}{13}$
As we know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Therefore, we have
$\Rightarrow {{\sin }^{2}}A+{{\left( \frac{12}{13} \right)}^{2}}=1$
Transfer ${{\left( \frac{12}{13} \right)}^{2}}$ to the R.H.S.
$\Rightarrow {{\sin }^{2}}A=1-{{\left( \frac{12}{13} \right)}^{2}}$
$\Rightarrow {{\sin }^{2}}A=1-\frac{144}{169}$
On taking L.C.M., we get
$\Rightarrow {{\sin }^{2}}A=\frac{169-144}{169}$
$\Rightarrow {{\sin }^{2}}A=\frac{25}{169}$
Take square root on both the sides
$\Rightarrow \sin A=\sqrt{\frac{25}{169}}=\frac{5}{13}$
$\Rightarrow A={{\sin }^{-1}}\left( \frac{5}{13} \right)$
Now, substitute the value of $A={{\sin }^{-1}}\left( \frac{5}{13} \right)$ in equation $\left( i \right)$
$\Rightarrow {{\sin }^{-1}}\left( \frac{3}{5} \right)+{{\sin }^{-1}}\left( \frac{5}{13} \right)={{\sin }^{-1}}\left( C \right)$
AS We know that ${{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\left\{ x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right\}$. Therefore, we get
\[\Rightarrow {{\sin }^{-1}}\left\{ \frac{3}{5}\sqrt{1-{{\left( \frac{5}{13} \right)}^{2}}}+\frac{5}{13}\sqrt{1-{{\left( \frac{3}{5} \right)}^{2}}} \right\}={{\sin }^{-1}}\left( C \right)\]
\[\Rightarrow {{\sin }^{-1}}\left\{ \frac{3}{5}\sqrt{1-\frac{25}{169}}+\frac{5}{13}\sqrt{1-\frac{9}{25}} \right\}={{\sin }^{-1}}\left( C \right)\]
On taking L.C.M., we get
\[\Rightarrow {{\sin }^{-1}}\left\{ \frac{3}{5}\sqrt{\frac{169-25}{169}}+\frac{5}{13}\sqrt{\frac{25-9}{25}} \right\}={{\sin }^{-1}}\left( C \right)\]
\[\Rightarrow {{\sin }^{-1}}\left\{ \frac{3}{5}\sqrt{\frac{144}{169}}+\frac{5}{13}\sqrt{\frac{16}{25}} \right\}={{\sin }^{-1}}\left( C \right)\]
We can write the above written equation as
\[\Rightarrow {{\sin }^{-1}}\left\{ \frac{3}{5}\sqrt{{{\left( \frac{12}{13} \right)}^{2}}}+\frac{5}{13}\sqrt{{{\left( \frac{4}{5} \right)}^{2}}} \right\}={{\sin }^{-1}}\left( C \right)\]
\[\Rightarrow {{\sin }^{-1}}\left( \frac{3}{5}\times \frac{12}{13}+\frac{5}{13}\times \frac{4}{5} \right)={{\sin }^{-1}}\left( C \right)\]
On multiplication of terms, we get
\[\Rightarrow {{\sin }^{-1}}\left( \frac{36}{65}+\frac{20}{65} \right)={{\sin }^{-1}}\left( C \right)\]
On taking L.C.M., we get
\[\Rightarrow {{\sin }^{-1}}\left( \frac{56}{65} \right)={{\sin }^{-1}}\left( C \right)\]
$\therefore C=\frac{56}{65}$
Hence, the value of $C$ is $\frac{56}{65}$.
Therefore, the correct option is 4.
Note: The trigonometric functions sine, cosine, tangent, cosecant, secant, and cotangent really execute the opposite operation, which is what the inverse trigonometric functions do. We are aware that the right angle triangle is particularly amenable to trig functions.
If the responses are the smallest values possible, then ${{\sin }^{-1}}x,{{\cos }^{-1}}x,{{\tan }^{-1}}x$
etc. signify angles or real numbers whose sine is x, cosine is x, and tangent is x.
Formula used:
We will apply ${{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\left\{ x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right\}$ identity to get the value of $C$.
Complete step by step solution:
Given that, ${{\sin }^{-1}}\left( \frac{3}{5} \right)+{{\cos }^{-1}}\left( \frac{12}{13} \right)={{\sin }^{-1}}\left( C \right)$
Let us first convert ${{\cos }^{-1}}$ function into ${{\sin }^{-1}}$
The inverse functions of the fundamental trigonometric functions are known as inverse trigonometric functions. $\sin ^{-1} x=\theta$ is a possible conversion for the fundamental trigonometric function$x$. In this case, $x$ can be expressed as a whole number, a decimal, a fraction, or an exponent. We have $(1 / 2)$ for $\theta=30^{\circ}$, where is a number between $0^{\circ}$and $90^{\circ}$. Inverse trigonometric function formulas can be created from any trigonometric formula.
Let $A={{\cos }^{-1}}\left( \frac{12}{13} \right)$
$\Rightarrow {{\sin }^{-1}}\left( \frac{3}{5} \right)+A={{\sin }^{-1}}\left( C \right)\,\,\,\,\,.......\left( i \right)$
We have, $A={{\cos }^{-1}}\left( \frac{12}{13} \right)$
$\Rightarrow \cos A=\frac{12}{13}$
As we know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Therefore, we have
$\Rightarrow {{\sin }^{2}}A+{{\left( \frac{12}{13} \right)}^{2}}=1$
Transfer ${{\left( \frac{12}{13} \right)}^{2}}$ to the R.H.S.
$\Rightarrow {{\sin }^{2}}A=1-{{\left( \frac{12}{13} \right)}^{2}}$
$\Rightarrow {{\sin }^{2}}A=1-\frac{144}{169}$
On taking L.C.M., we get
$\Rightarrow {{\sin }^{2}}A=\frac{169-144}{169}$
$\Rightarrow {{\sin }^{2}}A=\frac{25}{169}$
Take square root on both the sides
$\Rightarrow \sin A=\sqrt{\frac{25}{169}}=\frac{5}{13}$
$\Rightarrow A={{\sin }^{-1}}\left( \frac{5}{13} \right)$
Now, substitute the value of $A={{\sin }^{-1}}\left( \frac{5}{13} \right)$ in equation $\left( i \right)$
$\Rightarrow {{\sin }^{-1}}\left( \frac{3}{5} \right)+{{\sin }^{-1}}\left( \frac{5}{13} \right)={{\sin }^{-1}}\left( C \right)$
AS We know that ${{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\left\{ x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right\}$. Therefore, we get
\[\Rightarrow {{\sin }^{-1}}\left\{ \frac{3}{5}\sqrt{1-{{\left( \frac{5}{13} \right)}^{2}}}+\frac{5}{13}\sqrt{1-{{\left( \frac{3}{5} \right)}^{2}}} \right\}={{\sin }^{-1}}\left( C \right)\]
\[\Rightarrow {{\sin }^{-1}}\left\{ \frac{3}{5}\sqrt{1-\frac{25}{169}}+\frac{5}{13}\sqrt{1-\frac{9}{25}} \right\}={{\sin }^{-1}}\left( C \right)\]
On taking L.C.M., we get
\[\Rightarrow {{\sin }^{-1}}\left\{ \frac{3}{5}\sqrt{\frac{169-25}{169}}+\frac{5}{13}\sqrt{\frac{25-9}{25}} \right\}={{\sin }^{-1}}\left( C \right)\]
\[\Rightarrow {{\sin }^{-1}}\left\{ \frac{3}{5}\sqrt{\frac{144}{169}}+\frac{5}{13}\sqrt{\frac{16}{25}} \right\}={{\sin }^{-1}}\left( C \right)\]
We can write the above written equation as
\[\Rightarrow {{\sin }^{-1}}\left\{ \frac{3}{5}\sqrt{{{\left( \frac{12}{13} \right)}^{2}}}+\frac{5}{13}\sqrt{{{\left( \frac{4}{5} \right)}^{2}}} \right\}={{\sin }^{-1}}\left( C \right)\]
\[\Rightarrow {{\sin }^{-1}}\left( \frac{3}{5}\times \frac{12}{13}+\frac{5}{13}\times \frac{4}{5} \right)={{\sin }^{-1}}\left( C \right)\]
On multiplication of terms, we get
\[\Rightarrow {{\sin }^{-1}}\left( \frac{36}{65}+\frac{20}{65} \right)={{\sin }^{-1}}\left( C \right)\]
On taking L.C.M., we get
\[\Rightarrow {{\sin }^{-1}}\left( \frac{56}{65} \right)={{\sin }^{-1}}\left( C \right)\]
$\therefore C=\frac{56}{65}$
Hence, the value of $C$ is $\frac{56}{65}$.
Therefore, the correct option is 4.
Note: The trigonometric functions sine, cosine, tangent, cosecant, secant, and cotangent really execute the opposite operation, which is what the inverse trigonometric functions do. We are aware that the right angle triangle is particularly amenable to trig functions.
If the responses are the smallest values possible, then ${{\sin }^{-1}}x,{{\cos }^{-1}}x,{{\tan }^{-1}}x$
etc. signify angles or real numbers whose sine is x, cosine is x, and tangent is x.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

