
If \[\sec \theta = 1\dfrac{1}{4}\] then calculate the value of \[\tan \dfrac{\theta }{2}\].
A. \[\dfrac{1}{3}\]
B. \[\dfrac{3}{4}\]
C. \[\dfrac{1}{4}\]
D. \[\dfrac{5}{4}\]
Answer
216k+ views
Hint: First we will calculate \[\cos \theta \] from the equation \[\sec \theta = 1\dfrac{1}{4}\]. Then we will apply the half-angle formula \[\tan \dfrac{\theta }{2} = \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \].
Formula used
\[\cos \theta = \dfrac{1}{{\sec \theta }}\]
Half angle formula:\[\tan \dfrac{\theta }{2} = \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \]
Complete step by step solution:
Given that \[\sec \theta = 1\dfrac{1}{4}\].
Rewrite the mixed fraction to improper fraction
\[\sec \theta = \dfrac{5}{4}\]
Now we will apply the formula \[\cos \theta = \dfrac{1}{{\sec \theta }}\] in above equation
\[\dfrac{1}{{\sec \theta }} = \dfrac{4}{5}\]
\[ \Rightarrow \cos \theta = \dfrac{4}{5}\]
Now we will apply half angle form to calculate \[\tan \dfrac{\theta }{2}\]
\[\tan \dfrac{\theta }{2} = \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \]
Putting \[\cos \theta = \dfrac{4}{5}\] in the above equation
\[\tan \dfrac{\theta }{2} = \sqrt {\dfrac{{1 - \dfrac{4}{5}}}{{1 + \dfrac{4}{5}}}} \]
\[ \Rightarrow \tan \dfrac{\theta }{2} = \sqrt {\dfrac{{\dfrac{1}{5}}}{{\dfrac{9}{5}}}} \]
Cancel out \[\dfrac{1}{5}\] from the numerator and denominator
\[ \Rightarrow \tan \dfrac{\theta }{2} = \sqrt {\dfrac{1}{9}} \]
\[ \Rightarrow \tan \dfrac{\theta }{2} = \dfrac{1}{3}\]
Hence option A is the correct option.
Additional information:
The half angle formulas are:
\[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\]
\[\cos \theta = 1 - 2{\sin ^2}\dfrac{\theta }{2}\]
\[\cos \theta = 2{\cos ^2}\dfrac{\theta }{2} - 1\]
\[\cos \theta = {\cos ^2}\dfrac{\theta }{2} - {\sin ^2}\dfrac{\theta }{2}\]
Note: Students often confused to apply the formulas \[\tan \dfrac{\theta }{2} = \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \] and \[\tan \dfrac{\theta }{2} = \sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} \]. But the correct formula is \[\tan \dfrac{\theta }{2} = \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \].
Formula used
\[\cos \theta = \dfrac{1}{{\sec \theta }}\]
Half angle formula:\[\tan \dfrac{\theta }{2} = \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \]
Complete step by step solution:
Given that \[\sec \theta = 1\dfrac{1}{4}\].
Rewrite the mixed fraction to improper fraction
\[\sec \theta = \dfrac{5}{4}\]
Now we will apply the formula \[\cos \theta = \dfrac{1}{{\sec \theta }}\] in above equation
\[\dfrac{1}{{\sec \theta }} = \dfrac{4}{5}\]
\[ \Rightarrow \cos \theta = \dfrac{4}{5}\]
Now we will apply half angle form to calculate \[\tan \dfrac{\theta }{2}\]
\[\tan \dfrac{\theta }{2} = \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \]
Putting \[\cos \theta = \dfrac{4}{5}\] in the above equation
\[\tan \dfrac{\theta }{2} = \sqrt {\dfrac{{1 - \dfrac{4}{5}}}{{1 + \dfrac{4}{5}}}} \]
\[ \Rightarrow \tan \dfrac{\theta }{2} = \sqrt {\dfrac{{\dfrac{1}{5}}}{{\dfrac{9}{5}}}} \]
Cancel out \[\dfrac{1}{5}\] from the numerator and denominator
\[ \Rightarrow \tan \dfrac{\theta }{2} = \sqrt {\dfrac{1}{9}} \]
\[ \Rightarrow \tan \dfrac{\theta }{2} = \dfrac{1}{3}\]
Hence option A is the correct option.
Additional information:
The half angle formulas are:
\[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\]
\[\cos \theta = 1 - 2{\sin ^2}\dfrac{\theta }{2}\]
\[\cos \theta = 2{\cos ^2}\dfrac{\theta }{2} - 1\]
\[\cos \theta = {\cos ^2}\dfrac{\theta }{2} - {\sin ^2}\dfrac{\theta }{2}\]
Note: Students often confused to apply the formulas \[\tan \dfrac{\theta }{2} = \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \] and \[\tan \dfrac{\theta }{2} = \sqrt {\dfrac{{1 + \cos \theta }}{{1 - \cos \theta }}} \]. But the correct formula is \[\tan \dfrac{\theta }{2} = \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} \].
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

