
If $R\to R$ be a function we sat that f has
Property 1: If \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exists and is finite.
Property 2: If \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\] exists and is finite.
Then, which of the following options is/are correct.
\[\begin{align}
& A.f\left( x \right)={{x}^{\dfrac{2}{3}}}\text{ has property 1} \\
& \text{B}\text{.f}\left( x \right)=\sin x\text{ has property 2} \\
& \text{C}\text{.f}\left( x \right)=\left| x \right|\text{ has property 1} \\
& \text{D}\text{.f}\left( x \right)=x\left| x \right|\text{ has property 2} \\
\end{align}\]
Answer
233.1k+ views
Hint: To solve this question, we will consider all options separately and check which one of them satisfy property 1 or 2. Also, in mid of solution we will use the fact that, if $\displaystyle \lim_{h \to 0},\dfrac{{{h}^{m}}}{{{h}^{n}}}\text{ and m n}$ then $\displaystyle \lim_{h \to 0},\dfrac{{{h}^{m}}}{{{h}^{n}}}=0$ and if $\text{m }<\text{ n}$ then $\displaystyle \lim_{h \to 0},\dfrac{{{h}^{m}}}{{{h}^{n}}}\text{ }=\text{ }\dfrac{1}{0}\text{ }=\text{ }\infty $ does not exist.
While calculating options having sin x we will use formula of limit with sin which is given as $\displaystyle \lim_{h \to 0},\dfrac{\sin x}{x}\text{ }=1$
Complete step-by-step answer:
Given,
Property 1: If \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exists and is finite.
Property 2: If \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\] exists and is finite.
To solve this question, we will consider all options one by one and see which one is correct.
Consider option A.
A. $f\left( x \right)={{x}^{\dfrac{2}{3}}}$ has property 1.
Let us compute \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
Substituting $f\left( h \right)={{h}^{\dfrac{2}{3}}}$ in above we get:
\[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] and f(0) = 0 so we have
\[\displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}-0}{\sqrt{\left| h \right|}}\Rightarrow \displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}}\]
Now,
\[\sqrt{h}={{h}^{\dfrac{1}{2}}}\Rightarrow \displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left| h \right|}^{\dfrac{1}{2}}}}\]
Now because $\dfrac{2}{3}\text{ }>\text{ }\dfrac{1}{2}$
So, power of numerator is bigger than power of denominator and as $h\text{ }\to 0$ so whether $h\text{ }\to {{0}^{+}}\Rightarrow h\text{ }\to {{0}^{-}}$ the numerator of $\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left| h \right|}^{\dfrac{1}{2}}}}$ is always greater than its denominator.
\[\Rightarrow \displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}}=0\] as we have a numerator bigger power.
So \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exist and is finite for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
So, option A is correct.
A. $f\left( x \right)={{x}^{\dfrac{2}{3}}}$ has property 1.
Let us compute \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
Substituting $f\left( h \right)={{h}^{\dfrac{2}{3}}}$ in above we get:
\[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] and f(0) = 0 so we have
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}-0}{\sqrt{\left| h \right|}} \\
& \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}} \\
\end{align}\]
Now,
\[\begin{align}
& \sqrt{h}={{h}^{\dfrac{1}{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left( \left| h \right| \right)}^{\dfrac{1}{2}}}} \\
\end{align}\]
Now because $\dfrac{2}{3}>\dfrac{1}{2}$
So, power of numerator is bigger than power of denominator and as $h\to 0$ so whether $h\to {{0}^{+}}\Rightarrow h\to {{0}^{-}}$ the numerator of $\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left( \left| h \right| \right)}^{\dfrac{1}{2}}}}$ is always greater than its denominator.
\[\Rightarrow \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}}=0\] as we have a numerator bigger power.
So \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exist and is finite for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
So, option A is correct.
Consider option B.
B. f(x) = sin x has property 2.
We have, property 2 has \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\]
Substituting f(h) = sin h in above and f(0) = sin 0 =0 we get:
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left( \sinh -\sin 0 \right)}{{{h}^{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left( \sinh -0 \right)}{{{h}^{2}}} \\
\end{align}\]
Taking $\dfrac{1}{h}$ common we get:
\[\displaystyle \lim_{h \to 0},\dfrac{1}{h}\left( \dfrac{\sinh }{h} \right)\]
Now, we will apply property of product of limit which says $\lim \left( ab \right)=\lim a\cdot \lim b$
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{1}{h}\left( \dfrac{\sinh }{h} \right) \\
& \Rightarrow \left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)\left( \displaystyle \lim_{h \to 0},\dfrac{\sinh }{h} \right) \\
\end{align}\]v
Again, we will use property of limit of sin which says:
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{\sin x}{x}=1 \\
& \Rightarrow \left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)\left( \displaystyle \lim_{h \to 0},\dfrac{\sinh }{h} \right)=\left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
& \Rightarrow \left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)=\dfrac{1}{0}=\infty \\
\end{align}\]
So, this limit doesn't exist.
Hence, option B is wrong.
Consider option C.
C. $f\left( x \right)=\left| x \right|$ has property 1.
Consider \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] and substituting $f\left( x \right)=\left| x \right|$ in above we get:
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left| h \right|-0}{\sqrt{\left| h \right|}} \\
\end{align}\]
Again using
\[\begin{align}
& \sqrt{h}={{h}^{\dfrac{1}{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}} \\
\end{align}\]
Observing we have power of $\left| h \right|$ in numerator is 1 and power of $\left| h \right|$ in denominator is $\dfrac{1}{2}$ and $1>\dfrac{1}{2}$
Numerator is bigger in \[\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}\] than denominator.
\[\displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}=0\] which is a finite number.
So, \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exist and is finite for $f\left( x \right)=\left| x \right|$
So option C is correct.
Consider option D.
D. $f\left( x \right)=x\left| x \right|$ has property 2.
Consider \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\]
Applying $f\left( x \right)=h\left| h \right|$ in above we get:
\[\displaystyle \lim_{h \to 0},\dfrac{h\left| h \right|-0}{{{h}^{2}}}\]
When $h>0\Rightarrow \displaystyle \lim_{h \to 0},\dfrac{h\left| h \right|-0}{{{h}^{2}}}=\displaystyle \lim_{h \to 0},\dfrac{{{h}^{2}}}{{{h}^{2}}}=1$
And when $h<0\Rightarrow \displaystyle \lim_{h \to 0},\dfrac{h\left| h \right|-0}{{{h}^{2}}}=\displaystyle \lim_{h \to 0},\dfrac{-{{h}^{2}}}{{{h}^{2}}}=-1$
This is so because $\left| x \right|=x$ when $x>0$ and $\left| x \right|=-x$ when $x<0$
So, when $h\to {{0}^{+}}$ then \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}=+1\]
And when $h\to {{0}^{-}}$ then \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}=-1\]
So, we have two different values, so \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\] doesn't exist when $f\left( x \right)=x\left| x \right|$
So, option D is wrong.
So, the correct answers are “Option A and C”.
Note: While considering \[\displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}\] in option C we can also go for another method which is as below:
\[\displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}=\displaystyle \lim_{h \to 0},{{\left| h \right|}^{1-\dfrac{1}{2}}}\]
This is so as $\dfrac{{{a}^{m}}}{{{a}^{n}}}{{a}^{m-n}}$
\[\displaystyle \lim_{h \to 0},{{\left| h \right|}^{1-\dfrac{1}{2}}}=\displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{1}{2}}}\]
So, after we apply limit \[\displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{1}{2}}}=0\]
Similarly, in option A we have \[\displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left( \left| h \right| \right)}^{\dfrac{1}{2}}}}\]
\[\displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{2}{3}-\dfrac{1}{2}}}\Rightarrow \displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{1}{6}}}\]
Which is anyway 0.
While calculating options having sin x we will use formula of limit with sin which is given as $\displaystyle \lim_{h \to 0},\dfrac{\sin x}{x}\text{ }=1$
Complete step-by-step answer:
Given,
Property 1: If \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exists and is finite.
Property 2: If \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\] exists and is finite.
To solve this question, we will consider all options one by one and see which one is correct.
Consider option A.
A. $f\left( x \right)={{x}^{\dfrac{2}{3}}}$ has property 1.
Let us compute \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
Substituting $f\left( h \right)={{h}^{\dfrac{2}{3}}}$ in above we get:
\[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] and f(0) = 0 so we have
\[\displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}-0}{\sqrt{\left| h \right|}}\Rightarrow \displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}}\]
Now,
\[\sqrt{h}={{h}^{\dfrac{1}{2}}}\Rightarrow \displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left| h \right|}^{\dfrac{1}{2}}}}\]
Now because $\dfrac{2}{3}\text{ }>\text{ }\dfrac{1}{2}$
So, power of numerator is bigger than power of denominator and as $h\text{ }\to 0$ so whether $h\text{ }\to {{0}^{+}}\Rightarrow h\text{ }\to {{0}^{-}}$ the numerator of $\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left| h \right|}^{\dfrac{1}{2}}}}$ is always greater than its denominator.
\[\Rightarrow \displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}}=0\] as we have a numerator bigger power.
So \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exist and is finite for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
So, option A is correct.
A. $f\left( x \right)={{x}^{\dfrac{2}{3}}}$ has property 1.
Let us compute \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
Substituting $f\left( h \right)={{h}^{\dfrac{2}{3}}}$ in above we get:
\[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] and f(0) = 0 so we have
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}-0}{\sqrt{\left| h \right|}} \\
& \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}} \\
\end{align}\]
Now,
\[\begin{align}
& \sqrt{h}={{h}^{\dfrac{1}{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left( \left| h \right| \right)}^{\dfrac{1}{2}}}} \\
\end{align}\]
Now because $\dfrac{2}{3}>\dfrac{1}{2}$
So, power of numerator is bigger than power of denominator and as $h\to 0$ so whether $h\to {{0}^{+}}\Rightarrow h\to {{0}^{-}}$ the numerator of $\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left( \left| h \right| \right)}^{\dfrac{1}{2}}}}$ is always greater than its denominator.
\[\Rightarrow \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}}=0\] as we have a numerator bigger power.
So \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exist and is finite for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
So, option A is correct.
Consider option B.
B. f(x) = sin x has property 2.
We have, property 2 has \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\]
Substituting f(h) = sin h in above and f(0) = sin 0 =0 we get:
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left( \sinh -\sin 0 \right)}{{{h}^{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left( \sinh -0 \right)}{{{h}^{2}}} \\
\end{align}\]
Taking $\dfrac{1}{h}$ common we get:
\[\displaystyle \lim_{h \to 0},\dfrac{1}{h}\left( \dfrac{\sinh }{h} \right)\]
Now, we will apply property of product of limit which says $\lim \left( ab \right)=\lim a\cdot \lim b$
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{1}{h}\left( \dfrac{\sinh }{h} \right) \\
& \Rightarrow \left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)\left( \displaystyle \lim_{h \to 0},\dfrac{\sinh }{h} \right) \\
\end{align}\]v
Again, we will use property of limit of sin which says:
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{\sin x}{x}=1 \\
& \Rightarrow \left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)\left( \displaystyle \lim_{h \to 0},\dfrac{\sinh }{h} \right)=\left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
& \Rightarrow \left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)=\dfrac{1}{0}=\infty \\
\end{align}\]
So, this limit doesn't exist.
Hence, option B is wrong.
Consider option C.
C. $f\left( x \right)=\left| x \right|$ has property 1.
Consider \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] and substituting $f\left( x \right)=\left| x \right|$ in above we get:
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left| h \right|-0}{\sqrt{\left| h \right|}} \\
\end{align}\]
Again using
\[\begin{align}
& \sqrt{h}={{h}^{\dfrac{1}{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}} \\
\end{align}\]
Observing we have power of $\left| h \right|$ in numerator is 1 and power of $\left| h \right|$ in denominator is $\dfrac{1}{2}$ and $1>\dfrac{1}{2}$
Numerator is bigger in \[\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}\] than denominator.
\[\displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}=0\] which is a finite number.
So, \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exist and is finite for $f\left( x \right)=\left| x \right|$
So option C is correct.
Consider option D.
D. $f\left( x \right)=x\left| x \right|$ has property 2.
Consider \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\]
Applying $f\left( x \right)=h\left| h \right|$ in above we get:
\[\displaystyle \lim_{h \to 0},\dfrac{h\left| h \right|-0}{{{h}^{2}}}\]
When $h>0\Rightarrow \displaystyle \lim_{h \to 0},\dfrac{h\left| h \right|-0}{{{h}^{2}}}=\displaystyle \lim_{h \to 0},\dfrac{{{h}^{2}}}{{{h}^{2}}}=1$
And when $h<0\Rightarrow \displaystyle \lim_{h \to 0},\dfrac{h\left| h \right|-0}{{{h}^{2}}}=\displaystyle \lim_{h \to 0},\dfrac{-{{h}^{2}}}{{{h}^{2}}}=-1$
This is so because $\left| x \right|=x$ when $x>0$ and $\left| x \right|=-x$ when $x<0$
So, when $h\to {{0}^{+}}$ then \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}=+1\]
And when $h\to {{0}^{-}}$ then \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}=-1\]
So, we have two different values, so \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\] doesn't exist when $f\left( x \right)=x\left| x \right|$
So, option D is wrong.
So, the correct answers are “Option A and C”.
Note: While considering \[\displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}\] in option C we can also go for another method which is as below:
\[\displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}=\displaystyle \lim_{h \to 0},{{\left| h \right|}^{1-\dfrac{1}{2}}}\]
This is so as $\dfrac{{{a}^{m}}}{{{a}^{n}}}{{a}^{m-n}}$
\[\displaystyle \lim_{h \to 0},{{\left| h \right|}^{1-\dfrac{1}{2}}}=\displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{1}{2}}}\]
So, after we apply limit \[\displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{1}{2}}}=0\]
Similarly, in option A we have \[\displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left( \left| h \right| \right)}^{\dfrac{1}{2}}}}\]
\[\displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{2}{3}-\dfrac{1}{2}}}\Rightarrow \displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{1}{6}}}\]
Which is anyway 0.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

