
If $R\to R$ be a function we sat that f has
Property 1: If \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exists and is finite.
Property 2: If \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\] exists and is finite.
Then, which of the following options is/are correct.
\[\begin{align}
& A.f\left( x \right)={{x}^{\dfrac{2}{3}}}\text{ has property 1} \\
& \text{B}\text{.f}\left( x \right)=\sin x\text{ has property 2} \\
& \text{C}\text{.f}\left( x \right)=\left| x \right|\text{ has property 1} \\
& \text{D}\text{.f}\left( x \right)=x\left| x \right|\text{ has property 2} \\
\end{align}\]
Answer
153.6k+ views
Hint: To solve this question, we will consider all options separately and check which one of them satisfy property 1 or 2. Also, in mid of solution we will use the fact that, if $\displaystyle \lim_{h \to 0},\dfrac{{{h}^{m}}}{{{h}^{n}}}\text{ and m n}$ then $\displaystyle \lim_{h \to 0},\dfrac{{{h}^{m}}}{{{h}^{n}}}=0$ and if $\text{m }<\text{ n}$ then $\displaystyle \lim_{h \to 0},\dfrac{{{h}^{m}}}{{{h}^{n}}}\text{ }=\text{ }\dfrac{1}{0}\text{ }=\text{ }\infty $ does not exist.
While calculating options having sin x we will use formula of limit with sin which is given as $\displaystyle \lim_{h \to 0},\dfrac{\sin x}{x}\text{ }=1$
Complete step-by-step answer:
Given,
Property 1: If \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exists and is finite.
Property 2: If \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\] exists and is finite.
To solve this question, we will consider all options one by one and see which one is correct.
Consider option A.
A. $f\left( x \right)={{x}^{\dfrac{2}{3}}}$ has property 1.
Let us compute \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
Substituting $f\left( h \right)={{h}^{\dfrac{2}{3}}}$ in above we get:
\[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] and f(0) = 0 so we have
\[\displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}-0}{\sqrt{\left| h \right|}}\Rightarrow \displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}}\]
Now,
\[\sqrt{h}={{h}^{\dfrac{1}{2}}}\Rightarrow \displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left| h \right|}^{\dfrac{1}{2}}}}\]
Now because $\dfrac{2}{3}\text{ }>\text{ }\dfrac{1}{2}$
So, power of numerator is bigger than power of denominator and as $h\text{ }\to 0$ so whether $h\text{ }\to {{0}^{+}}\Rightarrow h\text{ }\to {{0}^{-}}$ the numerator of $\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left| h \right|}^{\dfrac{1}{2}}}}$ is always greater than its denominator.
\[\Rightarrow \displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}}=0\] as we have a numerator bigger power.
So \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exist and is finite for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
So, option A is correct.
A. $f\left( x \right)={{x}^{\dfrac{2}{3}}}$ has property 1.
Let us compute \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
Substituting $f\left( h \right)={{h}^{\dfrac{2}{3}}}$ in above we get:
\[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] and f(0) = 0 so we have
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}-0}{\sqrt{\left| h \right|}} \\
& \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}} \\
\end{align}\]
Now,
\[\begin{align}
& \sqrt{h}={{h}^{\dfrac{1}{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left( \left| h \right| \right)}^{\dfrac{1}{2}}}} \\
\end{align}\]
Now because $\dfrac{2}{3}>\dfrac{1}{2}$
So, power of numerator is bigger than power of denominator and as $h\to 0$ so whether $h\to {{0}^{+}}\Rightarrow h\to {{0}^{-}}$ the numerator of $\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left( \left| h \right| \right)}^{\dfrac{1}{2}}}}$ is always greater than its denominator.
\[\Rightarrow \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}}=0\] as we have a numerator bigger power.
So \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exist and is finite for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
So, option A is correct.
Consider option B.
B. f(x) = sin x has property 2.
We have, property 2 has \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\]
Substituting f(h) = sin h in above and f(0) = sin 0 =0 we get:
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left( \sinh -\sin 0 \right)}{{{h}^{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left( \sinh -0 \right)}{{{h}^{2}}} \\
\end{align}\]
Taking $\dfrac{1}{h}$ common we get:
\[\displaystyle \lim_{h \to 0},\dfrac{1}{h}\left( \dfrac{\sinh }{h} \right)\]
Now, we will apply property of product of limit which says $\lim \left( ab \right)=\lim a\cdot \lim b$
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{1}{h}\left( \dfrac{\sinh }{h} \right) \\
& \Rightarrow \left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)\left( \displaystyle \lim_{h \to 0},\dfrac{\sinh }{h} \right) \\
\end{align}\]v
Again, we will use property of limit of sin which says:
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{\sin x}{x}=1 \\
& \Rightarrow \left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)\left( \displaystyle \lim_{h \to 0},\dfrac{\sinh }{h} \right)=\left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
& \Rightarrow \left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)=\dfrac{1}{0}=\infty \\
\end{align}\]
So, this limit doesn't exist.
Hence, option B is wrong.
Consider option C.
C. $f\left( x \right)=\left| x \right|$ has property 1.
Consider \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] and substituting $f\left( x \right)=\left| x \right|$ in above we get:
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left| h \right|-0}{\sqrt{\left| h \right|}} \\
\end{align}\]
Again using
\[\begin{align}
& \sqrt{h}={{h}^{\dfrac{1}{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}} \\
\end{align}\]
Observing we have power of $\left| h \right|$ in numerator is 1 and power of $\left| h \right|$ in denominator is $\dfrac{1}{2}$ and $1>\dfrac{1}{2}$
Numerator is bigger in \[\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}\] than denominator.
\[\displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}=0\] which is a finite number.
So, \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exist and is finite for $f\left( x \right)=\left| x \right|$
So option C is correct.
Consider option D.
D. $f\left( x \right)=x\left| x \right|$ has property 2.
Consider \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\]
Applying $f\left( x \right)=h\left| h \right|$ in above we get:
\[\displaystyle \lim_{h \to 0},\dfrac{h\left| h \right|-0}{{{h}^{2}}}\]
When $h>0\Rightarrow \displaystyle \lim_{h \to 0},\dfrac{h\left| h \right|-0}{{{h}^{2}}}=\displaystyle \lim_{h \to 0},\dfrac{{{h}^{2}}}{{{h}^{2}}}=1$
And when $h<0\Rightarrow \displaystyle \lim_{h \to 0},\dfrac{h\left| h \right|-0}{{{h}^{2}}}=\displaystyle \lim_{h \to 0},\dfrac{-{{h}^{2}}}{{{h}^{2}}}=-1$
This is so because $\left| x \right|=x$ when $x>0$ and $\left| x \right|=-x$ when $x<0$
So, when $h\to {{0}^{+}}$ then \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}=+1\]
And when $h\to {{0}^{-}}$ then \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}=-1\]
So, we have two different values, so \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\] doesn't exist when $f\left( x \right)=x\left| x \right|$
So, option D is wrong.
So, the correct answers are “Option A and C”.
Note: While considering \[\displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}\] in option C we can also go for another method which is as below:
\[\displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}=\displaystyle \lim_{h \to 0},{{\left| h \right|}^{1-\dfrac{1}{2}}}\]
This is so as $\dfrac{{{a}^{m}}}{{{a}^{n}}}{{a}^{m-n}}$
\[\displaystyle \lim_{h \to 0},{{\left| h \right|}^{1-\dfrac{1}{2}}}=\displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{1}{2}}}\]
So, after we apply limit \[\displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{1}{2}}}=0\]
Similarly, in option A we have \[\displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left( \left| h \right| \right)}^{\dfrac{1}{2}}}}\]
\[\displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{2}{3}-\dfrac{1}{2}}}\Rightarrow \displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{1}{6}}}\]
Which is anyway 0.
While calculating options having sin x we will use formula of limit with sin which is given as $\displaystyle \lim_{h \to 0},\dfrac{\sin x}{x}\text{ }=1$
Complete step-by-step answer:
Given,
Property 1: If \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exists and is finite.
Property 2: If \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\] exists and is finite.
To solve this question, we will consider all options one by one and see which one is correct.
Consider option A.
A. $f\left( x \right)={{x}^{\dfrac{2}{3}}}$ has property 1.
Let us compute \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
Substituting $f\left( h \right)={{h}^{\dfrac{2}{3}}}$ in above we get:
\[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] and f(0) = 0 so we have
\[\displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}-0}{\sqrt{\left| h \right|}}\Rightarrow \displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}}\]
Now,
\[\sqrt{h}={{h}^{\dfrac{1}{2}}}\Rightarrow \displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left| h \right|}^{\dfrac{1}{2}}}}\]
Now because $\dfrac{2}{3}\text{ }>\text{ }\dfrac{1}{2}$
So, power of numerator is bigger than power of denominator and as $h\text{ }\to 0$ so whether $h\text{ }\to {{0}^{+}}\Rightarrow h\text{ }\to {{0}^{-}}$ the numerator of $\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left| h \right|}^{\dfrac{1}{2}}}}$ is always greater than its denominator.
\[\Rightarrow \displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}}=0\] as we have a numerator bigger power.
So \[\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exist and is finite for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
So, option A is correct.
A. $f\left( x \right)={{x}^{\dfrac{2}{3}}}$ has property 1.
Let us compute \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
Substituting $f\left( h \right)={{h}^{\dfrac{2}{3}}}$ in above we get:
\[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] and f(0) = 0 so we have
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}-0}{\sqrt{\left| h \right|}} \\
& \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}} \\
\end{align}\]
Now,
\[\begin{align}
& \sqrt{h}={{h}^{\dfrac{1}{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left( \left| h \right| \right)}^{\dfrac{1}{2}}}} \\
\end{align}\]
Now because $\dfrac{2}{3}>\dfrac{1}{2}$
So, power of numerator is bigger than power of denominator and as $h\to 0$ so whether $h\to {{0}^{+}}\Rightarrow h\to {{0}^{-}}$ the numerator of $\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left( \left| h \right| \right)}^{\dfrac{1}{2}}}}$ is always greater than its denominator.
\[\Rightarrow \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}}=0\] as we have a numerator bigger power.
So \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exist and is finite for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$
So, option A is correct.
Consider option B.
B. f(x) = sin x has property 2.
We have, property 2 has \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\]
Substituting f(h) = sin h in above and f(0) = sin 0 =0 we get:
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left( \sinh -\sin 0 \right)}{{{h}^{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left( \sinh -0 \right)}{{{h}^{2}}} \\
\end{align}\]
Taking $\dfrac{1}{h}$ common we get:
\[\displaystyle \lim_{h \to 0},\dfrac{1}{h}\left( \dfrac{\sinh }{h} \right)\]
Now, we will apply property of product of limit which says $\lim \left( ab \right)=\lim a\cdot \lim b$
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{1}{h}\left( \dfrac{\sinh }{h} \right) \\
& \Rightarrow \left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)\left( \displaystyle \lim_{h \to 0},\dfrac{\sinh }{h} \right) \\
\end{align}\]v
Again, we will use property of limit of sin which says:
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{\sin x}{x}=1 \\
& \Rightarrow \left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)\left( \displaystyle \lim_{h \to 0},\dfrac{\sinh }{h} \right)=\left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
& \Rightarrow \left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)=\dfrac{1}{0}=\infty \\
\end{align}\]
So, this limit doesn't exist.
Hence, option B is wrong.
Consider option C.
C. $f\left( x \right)=\left| x \right|$ has property 1.
Consider \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] and substituting $f\left( x \right)=\left| x \right|$ in above we get:
\[\begin{align}
& \displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left| h \right|-0}{\sqrt{\left| h \right|}} \\
\end{align}\]
Again using
\[\begin{align}
& \sqrt{h}={{h}^{\dfrac{1}{2}}} \\
& \displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}} \\
\end{align}\]
Observing we have power of $\left| h \right|$ in numerator is 1 and power of $\left| h \right|$ in denominator is $\dfrac{1}{2}$ and $1>\dfrac{1}{2}$
Numerator is bigger in \[\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}\] than denominator.
\[\displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}=0\] which is a finite number.
So, \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}\] exist and is finite for $f\left( x \right)=\left| x \right|$
So option C is correct.
Consider option D.
D. $f\left( x \right)=x\left| x \right|$ has property 2.
Consider \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\]
Applying $f\left( x \right)=h\left| h \right|$ in above we get:
\[\displaystyle \lim_{h \to 0},\dfrac{h\left| h \right|-0}{{{h}^{2}}}\]
When $h>0\Rightarrow \displaystyle \lim_{h \to 0},\dfrac{h\left| h \right|-0}{{{h}^{2}}}=\displaystyle \lim_{h \to 0},\dfrac{{{h}^{2}}}{{{h}^{2}}}=1$
And when $h<0\Rightarrow \displaystyle \lim_{h \to 0},\dfrac{h\left| h \right|-0}{{{h}^{2}}}=\displaystyle \lim_{h \to 0},\dfrac{-{{h}^{2}}}{{{h}^{2}}}=-1$
This is so because $\left| x \right|=x$ when $x>0$ and $\left| x \right|=-x$ when $x<0$
So, when $h\to {{0}^{+}}$ then \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}=+1\]
And when $h\to {{0}^{-}}$ then \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}=-1\]
So, we have two different values, so \[\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}\] doesn't exist when $f\left( x \right)=x\left| x \right|$
So, option D is wrong.
So, the correct answers are “Option A and C”.
Note: While considering \[\displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}\] in option C we can also go for another method which is as below:
\[\displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}=\displaystyle \lim_{h \to 0},{{\left| h \right|}^{1-\dfrac{1}{2}}}\]
This is so as $\dfrac{{{a}^{m}}}{{{a}^{n}}}{{a}^{m-n}}$
\[\displaystyle \lim_{h \to 0},{{\left| h \right|}^{1-\dfrac{1}{2}}}=\displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{1}{2}}}\]
So, after we apply limit \[\displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{1}{2}}}=0\]
Similarly, in option A we have \[\displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left( \left| h \right| \right)}^{\dfrac{1}{2}}}}\]
\[\displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{2}{3}-\dfrac{1}{2}}}\Rightarrow \displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{1}{6}}}\]
Which is anyway 0.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electrical Field of Charged Spherical Shell - JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
