
If \[P\left( {\overline A \cap B} \right) + P\left( {A \cap \overline B } \right) = 1 - k,\] \[P\left( {\overline A \cap C} \right) + P\left( {A \cap \overline C } \right) = 1 - 2k,\] \[P\left( {\overline B \cap C} \right) + P\left( {B \cap \overline C } \right) = 1 - k,\] $P\left( {A \cap B \cap C} \right) = {k^2},$ $k \in \left( {0,1} \right)$. Then, find the value of $P$ $($at least one of $A,B,C)$ is:
(A) $ > \;\dfrac{1}{2}$
(B) $\left[ {\dfrac{1}{8},\dfrac{1}{4}} \right]$
(C) \[ < \;\dfrac{1}{4}\]
(D) $\dfrac{1}{4}$
Answer
221.1k+ views
Hint: In order to solve this question, we will first simplify all three given equations using the suitable identity. Next, we will add all the equations obtained by solving the given three equations. Further, we will substitute them in another identity and simplify it to get the desired correct answer.
Complete step by step Solution:
We are given that,
\[P\left( {\overline A \cap B} \right) + P\left( {A \cap \overline B } \right) = 1 - k\] ………………..equation $\left( 1 \right)$
\[P\left( {\overline A \cap C} \right) + P\left( {A \cap \overline C } \right) = 1 - 2k\] ………………..equation $(2)$
\[P\left( {\overline B \cap C} \right) + P\left( {B \cap \overline C } \right) = 1 - k\] ………………..equation $(3)$
We know that,
$P\left( {\overline X \cap Y} \right) = P\left( Y \right) - P\left( {X \cap Y} \right)$ ………………..equation $(4)$
Solving equations $\left( 1 \right),\left( 2 \right),\left( 3 \right)$ using equation $(4)$ we get,
$P\left( A \right) + P\left( B \right) - 2P\left( {A \cap B} \right)$ ………………..equation $\left( 5 \right)$
$P\left( A \right) + P\left( C \right) - 2P\left( {A \cap C} \right)$ ………………..equation $\left( 6 \right)$
$P\left( B \right) + P\left( C \right) - 2P\left( {B \cap C} \right)$ ………………..equation $\left( 7 \right)$
Adding equations $\left( 5 \right),\left( 6 \right),\left( 7 \right)$ we get,
$P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) = \dfrac{{\left( {3 - 4k} \right)}}{2}$ ………………..equation $\left( 8 \right)$
We know that,
\[P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) + P\left( {A \cap B \cap C} \right)\]
Substituting equation $\left( 8 \right)$ in the above equation,
$P\left( {A \cup B \cup C} \right) = \dfrac{{\left( {3 - 4k} \right)}}{2} + {k^2}$
Solving it,
$P\left( {A \cup B \cup C} \right) = \dfrac{{\left( {3 - 4k + 2{k^2}} \right)}}{2}$
Since, the value of $2{k^2} - 4k + 3$ is greater than $1$ so,
$P\left( {A \cup B \cup C} \right) > \;\dfrac{1}{2}$
Hence, the correct option is A.
Note: Make sure you use a suitable identity. Also, after solving the given equations, in order to avoid getting a wrong answer, check wisely and attentively whether you need to add all the equations or some other simplification is required depending upon the need of the question.
Complete step by step Solution:
We are given that,
\[P\left( {\overline A \cap B} \right) + P\left( {A \cap \overline B } \right) = 1 - k\] ………………..equation $\left( 1 \right)$
\[P\left( {\overline A \cap C} \right) + P\left( {A \cap \overline C } \right) = 1 - 2k\] ………………..equation $(2)$
\[P\left( {\overline B \cap C} \right) + P\left( {B \cap \overline C } \right) = 1 - k\] ………………..equation $(3)$
We know that,
$P\left( {\overline X \cap Y} \right) = P\left( Y \right) - P\left( {X \cap Y} \right)$ ………………..equation $(4)$
Solving equations $\left( 1 \right),\left( 2 \right),\left( 3 \right)$ using equation $(4)$ we get,
$P\left( A \right) + P\left( B \right) - 2P\left( {A \cap B} \right)$ ………………..equation $\left( 5 \right)$
$P\left( A \right) + P\left( C \right) - 2P\left( {A \cap C} \right)$ ………………..equation $\left( 6 \right)$
$P\left( B \right) + P\left( C \right) - 2P\left( {B \cap C} \right)$ ………………..equation $\left( 7 \right)$
Adding equations $\left( 5 \right),\left( 6 \right),\left( 7 \right)$ we get,
$P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) = \dfrac{{\left( {3 - 4k} \right)}}{2}$ ………………..equation $\left( 8 \right)$
We know that,
\[P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) + P\left( {A \cap B \cap C} \right)\]
Substituting equation $\left( 8 \right)$ in the above equation,
$P\left( {A \cup B \cup C} \right) = \dfrac{{\left( {3 - 4k} \right)}}{2} + {k^2}$
Solving it,
$P\left( {A \cup B \cup C} \right) = \dfrac{{\left( {3 - 4k + 2{k^2}} \right)}}{2}$
Since, the value of $2{k^2} - 4k + 3$ is greater than $1$ so,
$P\left( {A \cup B \cup C} \right) > \;\dfrac{1}{2}$
Hence, the correct option is A.
Note: Make sure you use a suitable identity. Also, after solving the given equations, in order to avoid getting a wrong answer, check wisely and attentively whether you need to add all the equations or some other simplification is required depending upon the need of the question.
Recently Updated Pages
If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

JEE Main 2022 (July 26th Shift 1) Physics Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Chemistry Question Paper with Answer Key

Apparent Frequency Explained: Formula, Uses & Examples

JEE Main 2023 (January 30th Shift 2) Chemistry Question Paper with Answer Key

Displacement Current and Maxwell’s Equations Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

Understanding Collisions: Types and Examples for Students

