
If \[P\left( {\overline A \cap B} \right) + P\left( {A \cap \overline B } \right) = 1 - k,\] \[P\left( {\overline A \cap C} \right) + P\left( {A \cap \overline C } \right) = 1 - 2k,\] \[P\left( {\overline B \cap C} \right) + P\left( {B \cap \overline C } \right) = 1 - k,\] $P\left( {A \cap B \cap C} \right) = {k^2},$ $k \in \left( {0,1} \right)$. Then, find the value of $P$ $($at least one of $A,B,C)$ is:
(A) $ > \;\dfrac{1}{2}$
(B) $\left[ {\dfrac{1}{8},\dfrac{1}{4}} \right]$
(C) \[ < \;\dfrac{1}{4}\]
(D) $\dfrac{1}{4}$
Answer
162.3k+ views
Hint: In order to solve this question, we will first simplify all three given equations using the suitable identity. Next, we will add all the equations obtained by solving the given three equations. Further, we will substitute them in another identity and simplify it to get the desired correct answer.
Complete step by step Solution:
We are given that,
\[P\left( {\overline A \cap B} \right) + P\left( {A \cap \overline B } \right) = 1 - k\] ………………..equation $\left( 1 \right)$
\[P\left( {\overline A \cap C} \right) + P\left( {A \cap \overline C } \right) = 1 - 2k\] ………………..equation $(2)$
\[P\left( {\overline B \cap C} \right) + P\left( {B \cap \overline C } \right) = 1 - k\] ………………..equation $(3)$
We know that,
$P\left( {\overline X \cap Y} \right) = P\left( Y \right) - P\left( {X \cap Y} \right)$ ………………..equation $(4)$
Solving equations $\left( 1 \right),\left( 2 \right),\left( 3 \right)$ using equation $(4)$ we get,
$P\left( A \right) + P\left( B \right) - 2P\left( {A \cap B} \right)$ ………………..equation $\left( 5 \right)$
$P\left( A \right) + P\left( C \right) - 2P\left( {A \cap C} \right)$ ………………..equation $\left( 6 \right)$
$P\left( B \right) + P\left( C \right) - 2P\left( {B \cap C} \right)$ ………………..equation $\left( 7 \right)$
Adding equations $\left( 5 \right),\left( 6 \right),\left( 7 \right)$ we get,
$P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) = \dfrac{{\left( {3 - 4k} \right)}}{2}$ ………………..equation $\left( 8 \right)$
We know that,
\[P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) + P\left( {A \cap B \cap C} \right)\]
Substituting equation $\left( 8 \right)$ in the above equation,
$P\left( {A \cup B \cup C} \right) = \dfrac{{\left( {3 - 4k} \right)}}{2} + {k^2}$
Solving it,
$P\left( {A \cup B \cup C} \right) = \dfrac{{\left( {3 - 4k + 2{k^2}} \right)}}{2}$
Since, the value of $2{k^2} - 4k + 3$ is greater than $1$ so,
$P\left( {A \cup B \cup C} \right) > \;\dfrac{1}{2}$
Hence, the correct option is A.
Note: Make sure you use a suitable identity. Also, after solving the given equations, in order to avoid getting a wrong answer, check wisely and attentively whether you need to add all the equations or some other simplification is required depending upon the need of the question.
Complete step by step Solution:
We are given that,
\[P\left( {\overline A \cap B} \right) + P\left( {A \cap \overline B } \right) = 1 - k\] ………………..equation $\left( 1 \right)$
\[P\left( {\overline A \cap C} \right) + P\left( {A \cap \overline C } \right) = 1 - 2k\] ………………..equation $(2)$
\[P\left( {\overline B \cap C} \right) + P\left( {B \cap \overline C } \right) = 1 - k\] ………………..equation $(3)$
We know that,
$P\left( {\overline X \cap Y} \right) = P\left( Y \right) - P\left( {X \cap Y} \right)$ ………………..equation $(4)$
Solving equations $\left( 1 \right),\left( 2 \right),\left( 3 \right)$ using equation $(4)$ we get,
$P\left( A \right) + P\left( B \right) - 2P\left( {A \cap B} \right)$ ………………..equation $\left( 5 \right)$
$P\left( A \right) + P\left( C \right) - 2P\left( {A \cap C} \right)$ ………………..equation $\left( 6 \right)$
$P\left( B \right) + P\left( C \right) - 2P\left( {B \cap C} \right)$ ………………..equation $\left( 7 \right)$
Adding equations $\left( 5 \right),\left( 6 \right),\left( 7 \right)$ we get,
$P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) = \dfrac{{\left( {3 - 4k} \right)}}{2}$ ………………..equation $\left( 8 \right)$
We know that,
\[P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) + P\left( {A \cap B \cap C} \right)\]
Substituting equation $\left( 8 \right)$ in the above equation,
$P\left( {A \cup B \cup C} \right) = \dfrac{{\left( {3 - 4k} \right)}}{2} + {k^2}$
Solving it,
$P\left( {A \cup B \cup C} \right) = \dfrac{{\left( {3 - 4k + 2{k^2}} \right)}}{2}$
Since, the value of $2{k^2} - 4k + 3$ is greater than $1$ so,
$P\left( {A \cup B \cup C} \right) > \;\dfrac{1}{2}$
Hence, the correct option is A.
Note: Make sure you use a suitable identity. Also, after solving the given equations, in order to avoid getting a wrong answer, check wisely and attentively whether you need to add all the equations or some other simplification is required depending upon the need of the question.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
