
If \[P\left( A \right) = \dfrac{1}{{12}}\], \[P\left( B \right) = \dfrac{5}{{12}}\], and \[P\left( {B|A} \right) = \dfrac{1}{{15}}\], what is the value of \[P\left( {A \cup B} \right)\]?
A. \[\dfrac{{89}}{{180}}\]
B. \[\dfrac{{90}}{{180}}\]
C. \[\dfrac{{91}}{{180}}\]
D. \[\dfrac{{92}}{{180}}\]
Answer
232.8k+ views
Hint: First we will apply the conditional probability that is \[P\left( {A|B} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\] to calculate the value of \[P\left( {A \cap B} \right)\]. Then we will substitute the value of \[P\left( A \right) = \dfrac{1}{{12}}\], \[P\left( B \right) = \dfrac{5}{{12}}\]and \[P\left( {A \cap B} \right)\] in the formula \[P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\] to calculate \[P\left( {A \cup B} \right)\].
Formula used:
Conditional probability: \[P\left( {A|B} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\]
\[P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\]
Complete step by step solution:
Given that, \[P\left( A \right) = \dfrac{1}{{12}}\], \[P\left( B \right) = \dfrac{5}{{12}}\], and \[P\left( {B|A} \right) = \dfrac{1}{{15}}\]
Now we will apply conditional probability \[P\left( {A|B} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\].
\[P\left( {B|A} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}}\]
Now substitute the value of \[P\left( A \right) = \dfrac{1}{{12}}\] and \[P\left( {B|A} \right) = \dfrac{1}{{15}}\]
\[ \Rightarrow \dfrac{1}{{15}} = \dfrac{{P\left( {A \cap B} \right)}}{{\dfrac{1}{{12}}}}\]
Multiply both sides by \[\dfrac{1}{{12}}\].
\[ \Rightarrow \dfrac{1}{{15}} \times \dfrac{1}{{12}} = P\left( {A \cap B} \right)\]
\[ \Rightarrow P\left( {A \cap B} \right) = \dfrac{1}{{180}}\]
Now we will apply the union of two mutually inclusive formula.
\[P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\]
Now substitute \[P\left( {A \cap B} \right) = \dfrac{1}{{180}}\], \[P\left( A \right)\] and \[P\left( B \right)\]
\[ \Rightarrow P\left( {A \cup B} \right) = \dfrac{1}{{12}} + \dfrac{5}{{12}} - \dfrac{1}{{180}}\]
\[ \Rightarrow P\left( {A \cup B} \right) = \dfrac{{15 + 75 - 1}}{{180}}\]
\[ \Rightarrow P\left( {A \cup B} \right) = \dfrac{{89}}{{180}}\]
Hence option A is correct answer.
Note: Many students often confused with the formulas \[P\left( {A|B} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\] and \[P\left( {A|B} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}}\]. The correct formula is \[P\left( {A|B} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\].
Formula used:
Conditional probability: \[P\left( {A|B} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\]
\[P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\]
Complete step by step solution:
Given that, \[P\left( A \right) = \dfrac{1}{{12}}\], \[P\left( B \right) = \dfrac{5}{{12}}\], and \[P\left( {B|A} \right) = \dfrac{1}{{15}}\]
Now we will apply conditional probability \[P\left( {A|B} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\].
\[P\left( {B|A} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}}\]
Now substitute the value of \[P\left( A \right) = \dfrac{1}{{12}}\] and \[P\left( {B|A} \right) = \dfrac{1}{{15}}\]
\[ \Rightarrow \dfrac{1}{{15}} = \dfrac{{P\left( {A \cap B} \right)}}{{\dfrac{1}{{12}}}}\]
Multiply both sides by \[\dfrac{1}{{12}}\].
\[ \Rightarrow \dfrac{1}{{15}} \times \dfrac{1}{{12}} = P\left( {A \cap B} \right)\]
\[ \Rightarrow P\left( {A \cap B} \right) = \dfrac{1}{{180}}\]
Now we will apply the union of two mutually inclusive formula.
\[P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right)\]
Now substitute \[P\left( {A \cap B} \right) = \dfrac{1}{{180}}\], \[P\left( A \right)\] and \[P\left( B \right)\]
\[ \Rightarrow P\left( {A \cup B} \right) = \dfrac{1}{{12}} + \dfrac{5}{{12}} - \dfrac{1}{{180}}\]
\[ \Rightarrow P\left( {A \cup B} \right) = \dfrac{{15 + 75 - 1}}{{180}}\]
\[ \Rightarrow P\left( {A \cup B} \right) = \dfrac{{89}}{{180}}\]
Hence option A is correct answer.
Note: Many students often confused with the formulas \[P\left( {A|B} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\] and \[P\left( {A|B} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}}\]. The correct formula is \[P\left( {A|B} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

