
If \[\overrightarrow{a}\], $\overrightarrow{b}$, and $\overrightarrow{c}$ are three coplanar vectors, then \[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=\]
A. \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
B. \[2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
C. \[3[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
D. \[0\]
Answer
232.8k+ views
Hint: In the above question, we are to find the value of the expression \[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]\], which can easily be solved if we know the concept of coplanarity of vectors.
Formula used: In vector triple product is cross and dot products are interchangeable. i.e.,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}\]
Complete step by step solution: Here, we are given that the three vectors \[\overrightarrow{a}\], $\overrightarrow{b}$, and $\overrightarrow{c}$ are coplanar vectors, which means they all lie in the same plane.
The concept of coplanarity states that if the same vector lies in the same plane twice then the result of the corresponding determinant will be zero.
Here we will use the same concept and try to draw the outcome of the given expression.
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]+[\overrightarrow{b}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]\]
We have drawn 8 different matrices from the given matrix by choosing the different possible pairs of elements.
Now, the matrices having the same elements twice will become zero as per the concept of coplanarity, and the resultant will be
\[\begin{align}
& [\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+0+0+0+0+0+0+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& \text{ }=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& \text{ }=2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
\end{align}\]
We know one more property of coplanar vector matrix that if the elements of the matrix are interchanged then the result will not change.
I.e.,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]\]
So, the result of the given expression will be
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
But the vectors \[\overrightarrow{a}\], $\overrightarrow{b}$, and $\overrightarrow{c}$ are coplanar vectors, \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=0\]
Therefore,
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=0\]
Thus, Option (D) is correct.
Additional Information:
Note: We can see that though the matrix has distinct elements the result will become zero because the coplanar vectors have determinants equal to 0.
Formula used: In vector triple product is cross and dot products are interchangeable. i.e.,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}\]
Complete step by step solution: Here, we are given that the three vectors \[\overrightarrow{a}\], $\overrightarrow{b}$, and $\overrightarrow{c}$ are coplanar vectors, which means they all lie in the same plane.
The concept of coplanarity states that if the same vector lies in the same plane twice then the result of the corresponding determinant will be zero.
Here we will use the same concept and try to draw the outcome of the given expression.
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]+[\overrightarrow{b}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]\]
We have drawn 8 different matrices from the given matrix by choosing the different possible pairs of elements.
Now, the matrices having the same elements twice will become zero as per the concept of coplanarity, and the resultant will be
\[\begin{align}
& [\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+0+0+0+0+0+0+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& \text{ }=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& \text{ }=2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
\end{align}\]
We know one more property of coplanar vector matrix that if the elements of the matrix are interchanged then the result will not change.
I.e.,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]\]
So, the result of the given expression will be
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
But the vectors \[\overrightarrow{a}\], $\overrightarrow{b}$, and $\overrightarrow{c}$ are coplanar vectors, \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=0\]
Therefore,
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=0\]
Thus, Option (D) is correct.
Additional Information:
Note: We can see that though the matrix has distinct elements the result will become zero because the coplanar vectors have determinants equal to 0.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

