
If \[\overrightarrow{a}\], $\overrightarrow{b}$, and $\overrightarrow{c}$ are three coplanar vectors, then \[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=\]
A. \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
B. \[2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
C. \[3[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
D. \[0\]
Answer
216.6k+ views
Hint: In the above question, we are to find the value of the expression \[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]\], which can easily be solved if we know the concept of coplanarity of vectors.
Formula used: In vector triple product is cross and dot products are interchangeable. i.e.,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}\]
Complete step by step solution: Here, we are given that the three vectors \[\overrightarrow{a}\], $\overrightarrow{b}$, and $\overrightarrow{c}$ are coplanar vectors, which means they all lie in the same plane.
The concept of coplanarity states that if the same vector lies in the same plane twice then the result of the corresponding determinant will be zero.
Here we will use the same concept and try to draw the outcome of the given expression.
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]+[\overrightarrow{b}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]\]
We have drawn 8 different matrices from the given matrix by choosing the different possible pairs of elements.
Now, the matrices having the same elements twice will become zero as per the concept of coplanarity, and the resultant will be
\[\begin{align}
& [\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+0+0+0+0+0+0+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& \text{ }=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& \text{ }=2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
\end{align}\]
We know one more property of coplanar vector matrix that if the elements of the matrix are interchanged then the result will not change.
I.e.,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]\]
So, the result of the given expression will be
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
But the vectors \[\overrightarrow{a}\], $\overrightarrow{b}$, and $\overrightarrow{c}$ are coplanar vectors, \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=0\]
Therefore,
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=0\]
Thus, Option (D) is correct.
Additional Information:
Note: We can see that though the matrix has distinct elements the result will become zero because the coplanar vectors have determinants equal to 0.
Formula used: In vector triple product is cross and dot products are interchangeable. i.e.,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}\]
Complete step by step solution: Here, we are given that the three vectors \[\overrightarrow{a}\], $\overrightarrow{b}$, and $\overrightarrow{c}$ are coplanar vectors, which means they all lie in the same plane.
The concept of coplanarity states that if the same vector lies in the same plane twice then the result of the corresponding determinant will be zero.
Here we will use the same concept and try to draw the outcome of the given expression.
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]+[\overrightarrow{b}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]\]
We have drawn 8 different matrices from the given matrix by choosing the different possible pairs of elements.
Now, the matrices having the same elements twice will become zero as per the concept of coplanarity, and the resultant will be
\[\begin{align}
& [\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+0+0+0+0+0+0+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& \text{ }=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& \text{ }=2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
\end{align}\]
We know one more property of coplanar vector matrix that if the elements of the matrix are interchanged then the result will not change.
I.e.,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]\]
So, the result of the given expression will be
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
But the vectors \[\overrightarrow{a}\], $\overrightarrow{b}$, and $\overrightarrow{c}$ are coplanar vectors, \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=0\]
Therefore,
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=0\]
Thus, Option (D) is correct.
Additional Information:
Note: We can see that though the matrix has distinct elements the result will become zero because the coplanar vectors have determinants equal to 0.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

