
If \[\overrightarrow{a}\], $\overrightarrow{b}$, and $\overrightarrow{c}$ are three coplanar vectors, then \[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=\]
A. \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
B. \[2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
C. \[3[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
D. \[0\]
Answer
161.1k+ views
Hint: In the above question, we are to find the value of the expression \[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]\], which can easily be solved if we know the concept of coplanarity of vectors.
Formula used: In vector triple product is cross and dot products are interchangeable. i.e.,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}\]
Complete step by step solution: Here, we are given that the three vectors \[\overrightarrow{a}\], $\overrightarrow{b}$, and $\overrightarrow{c}$ are coplanar vectors, which means they all lie in the same plane.
The concept of coplanarity states that if the same vector lies in the same plane twice then the result of the corresponding determinant will be zero.
Here we will use the same concept and try to draw the outcome of the given expression.
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]+[\overrightarrow{b}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]\]
We have drawn 8 different matrices from the given matrix by choosing the different possible pairs of elements.
Now, the matrices having the same elements twice will become zero as per the concept of coplanarity, and the resultant will be
\[\begin{align}
& [\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+0+0+0+0+0+0+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& \text{ }=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& \text{ }=2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
\end{align}\]
We know one more property of coplanar vector matrix that if the elements of the matrix are interchanged then the result will not change.
I.e.,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]\]
So, the result of the given expression will be
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
But the vectors \[\overrightarrow{a}\], $\overrightarrow{b}$, and $\overrightarrow{c}$ are coplanar vectors, \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=0\]
Therefore,
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=0\]
Thus, Option (D) is correct.
Additional Information:
Note: We can see that though the matrix has distinct elements the result will become zero because the coplanar vectors have determinants equal to 0.
Formula used: In vector triple product is cross and dot products are interchangeable. i.e.,
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}\]
Complete step by step solution: Here, we are given that the three vectors \[\overrightarrow{a}\], $\overrightarrow{b}$, and $\overrightarrow{c}$ are coplanar vectors, which means they all lie in the same plane.
The concept of coplanarity states that if the same vector lies in the same plane twice then the result of the corresponding determinant will be zero.
Here we will use the same concept and try to draw the outcome of the given expression.
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]+[\overrightarrow{b}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]\]
We have drawn 8 different matrices from the given matrix by choosing the different possible pairs of elements.
Now, the matrices having the same elements twice will become zero as per the concept of coplanarity, and the resultant will be
\[\begin{align}
& [\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+0+0+0+0+0+0+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& \text{ }=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]+[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}] \\
& \text{ }=2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
\end{align}\]
We know one more property of coplanar vector matrix that if the elements of the matrix are interchanged then the result will not change.
I.e.,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]\]
So, the result of the given expression will be
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=2[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\]
But the vectors \[\overrightarrow{a}\], $\overrightarrow{b}$, and $\overrightarrow{c}$ are coplanar vectors, \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=0\]
Therefore,
\[[\overrightarrow{a}+\overrightarrow{b}\text{ }\overrightarrow{b}+\overrightarrow{c}\text{ }\overrightarrow{c}+\overrightarrow{a}]=0\]
Thus, Option (D) is correct.
Additional Information:
Note: We can see that though the matrix has distinct elements the result will become zero because the coplanar vectors have determinants equal to 0.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
