
If \[n = {2^{p - 1}}\left( {{2^p} - 1} \right)\] , where \[\left( {{2^p} - 1} \right)\] is a prime. Then what is the sum of the divisors of \[n\]?
A. \[n\]
B. \[2n\]
C. \[pn\]
D. \[{p^n}\]
Answer
232.8k+ views
Hint: Here, a number is given. First, using the terms of the number find each divisor. After that, calculate the sum of the divisors. Simplify the equation of the sum of the divisors by using the formula of the sum of the finite terms in the geometric progression. In the end, solve the equation by using the power properties of a number and get the required answer.
Formula Used: \[{a^m}{a^n} = {a^{m + n}}\]
The sum of the first \[n\] terms in the geometric progression \[a,ar,a{r^2},...,a{r^{n - 1}}\] is: \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\] if \[r \ne 1\] . Where \[a\] is the first term and \[r\] is the common ratio.
Complete step by step solution: Given:
\[n = {2^{p - 1}}\left( {{2^p} - 1} \right)\] and \[\left( {{2^p} - 1} \right)\] is a prime number.
Let’s find out the divisors of the given number \[n\].
Let consider \[n = {2^{p - 1}}q\], where \[{2^p} - 1 = q\].
So, the divisors of \[n = {2^{p - 1}}q\] are
\[1,2,{2^2},{2^3},....,{2^{p - 1}},q,2q,{2^2}q,{2^3}q,...{2^{p - 2}}q,{2^{p - 1}}q\]
The sum of the divisors of \[n\] is:
\[S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}} + q + 2q + {2^2}q + {2^3}q + ... + {2^{p - 2}}q + {2^{p - 1}}q} \right)\]
Solve the right-hand side of the above equation.
\[S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}}} \right) + \left( {q + 2q + {2^2}q + {2^3}q + ... + {2^{p - 2}}q + {2^{p - 1}}q} \right)\]
\[ \Rightarrow S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}}} \right) + q\left( {1 + 2 + {2^2} + {2^3} + ... + {2^{p - 2}} + {2^{p - 1}}} \right)\]
The terms of the above summation are in the geometric progression with the common difference 2.
So, apply the formula of the sum of the terms in a geometric progression on the right-hand side.
We get,
\[S = \dfrac{{1\left( {{2^p} - 1} \right)}}{{2 - 1}} + q\dfrac{{1\left( {{2^p} - 1} \right)}}{{2 - 1}}\]
\[ \Rightarrow S = \left( {{2^p} - 1} \right) + q\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = \left( {{2^p} - 1} \right)\left( {1 + q} \right)\]
Substitute the value of \[q\] in the above equation.
\[S = \left( {{2^p} - 1} \right)\left( {1 + {2^p} - 1} \right)\]
\[ \Rightarrow S = \left( {{2^p}} \right)\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = 2\left( {{2^{p - 1}}} \right)\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = 2n\]
Therefore, the sum of the divisors of \[n = {2^{p - 1}}\left( {{2^p} - 1} \right)\] is \[2n\].
Option ‘B’ is correct
Note: Students get confused about the formulas of the sum of the terms in the geometric progression:
The sum of the first \[n\] terms in the geometric progression \[a,ar,a{r^2},...,a{r^{n - 1}}\] is
Formulas:
\[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\], if \[r \ne 1\] and \[r > 1\]
\[{S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}}\], if \[r \ne 1\] and \[r < 1\]
Formula Used: \[{a^m}{a^n} = {a^{m + n}}\]
The sum of the first \[n\] terms in the geometric progression \[a,ar,a{r^2},...,a{r^{n - 1}}\] is: \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\] if \[r \ne 1\] . Where \[a\] is the first term and \[r\] is the common ratio.
Complete step by step solution: Given:
\[n = {2^{p - 1}}\left( {{2^p} - 1} \right)\] and \[\left( {{2^p} - 1} \right)\] is a prime number.
Let’s find out the divisors of the given number \[n\].
Let consider \[n = {2^{p - 1}}q\], where \[{2^p} - 1 = q\].
So, the divisors of \[n = {2^{p - 1}}q\] are
\[1,2,{2^2},{2^3},....,{2^{p - 1}},q,2q,{2^2}q,{2^3}q,...{2^{p - 2}}q,{2^{p - 1}}q\]
The sum of the divisors of \[n\] is:
\[S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}} + q + 2q + {2^2}q + {2^3}q + ... + {2^{p - 2}}q + {2^{p - 1}}q} \right)\]
Solve the right-hand side of the above equation.
\[S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}}} \right) + \left( {q + 2q + {2^2}q + {2^3}q + ... + {2^{p - 2}}q + {2^{p - 1}}q} \right)\]
\[ \Rightarrow S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}}} \right) + q\left( {1 + 2 + {2^2} + {2^3} + ... + {2^{p - 2}} + {2^{p - 1}}} \right)\]
The terms of the above summation are in the geometric progression with the common difference 2.
So, apply the formula of the sum of the terms in a geometric progression on the right-hand side.
We get,
\[S = \dfrac{{1\left( {{2^p} - 1} \right)}}{{2 - 1}} + q\dfrac{{1\left( {{2^p} - 1} \right)}}{{2 - 1}}\]
\[ \Rightarrow S = \left( {{2^p} - 1} \right) + q\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = \left( {{2^p} - 1} \right)\left( {1 + q} \right)\]
Substitute the value of \[q\] in the above equation.
\[S = \left( {{2^p} - 1} \right)\left( {1 + {2^p} - 1} \right)\]
\[ \Rightarrow S = \left( {{2^p}} \right)\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = 2\left( {{2^{p - 1}}} \right)\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = 2n\]
Therefore, the sum of the divisors of \[n = {2^{p - 1}}\left( {{2^p} - 1} \right)\] is \[2n\].
Option ‘B’ is correct
Note: Students get confused about the formulas of the sum of the terms in the geometric progression:
The sum of the first \[n\] terms in the geometric progression \[a,ar,a{r^2},...,a{r^{n - 1}}\] is
Formulas:
\[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\], if \[r \ne 1\] and \[r > 1\]
\[{S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}}\], if \[r \ne 1\] and \[r < 1\]
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

