
If \[n = {2^{p - 1}}\left( {{2^p} - 1} \right)\] , where \[\left( {{2^p} - 1} \right)\] is a prime. Then what is the sum of the divisors of \[n\]?
A. \[n\]
B. \[2n\]
C. \[pn\]
D. \[{p^n}\]
Answer
218.4k+ views
Hint: Here, a number is given. First, using the terms of the number find each divisor. After that, calculate the sum of the divisors. Simplify the equation of the sum of the divisors by using the formula of the sum of the finite terms in the geometric progression. In the end, solve the equation by using the power properties of a number and get the required answer.
Formula Used: \[{a^m}{a^n} = {a^{m + n}}\]
The sum of the first \[n\] terms in the geometric progression \[a,ar,a{r^2},...,a{r^{n - 1}}\] is: \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\] if \[r \ne 1\] . Where \[a\] is the first term and \[r\] is the common ratio.
Complete step by step solution: Given:
\[n = {2^{p - 1}}\left( {{2^p} - 1} \right)\] and \[\left( {{2^p} - 1} \right)\] is a prime number.
Let’s find out the divisors of the given number \[n\].
Let consider \[n = {2^{p - 1}}q\], where \[{2^p} - 1 = q\].
So, the divisors of \[n = {2^{p - 1}}q\] are
\[1,2,{2^2},{2^3},....,{2^{p - 1}},q,2q,{2^2}q,{2^3}q,...{2^{p - 2}}q,{2^{p - 1}}q\]
The sum of the divisors of \[n\] is:
\[S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}} + q + 2q + {2^2}q + {2^3}q + ... + {2^{p - 2}}q + {2^{p - 1}}q} \right)\]
Solve the right-hand side of the above equation.
\[S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}}} \right) + \left( {q + 2q + {2^2}q + {2^3}q + ... + {2^{p - 2}}q + {2^{p - 1}}q} \right)\]
\[ \Rightarrow S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}}} \right) + q\left( {1 + 2 + {2^2} + {2^3} + ... + {2^{p - 2}} + {2^{p - 1}}} \right)\]
The terms of the above summation are in the geometric progression with the common difference 2.
So, apply the formula of the sum of the terms in a geometric progression on the right-hand side.
We get,
\[S = \dfrac{{1\left( {{2^p} - 1} \right)}}{{2 - 1}} + q\dfrac{{1\left( {{2^p} - 1} \right)}}{{2 - 1}}\]
\[ \Rightarrow S = \left( {{2^p} - 1} \right) + q\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = \left( {{2^p} - 1} \right)\left( {1 + q} \right)\]
Substitute the value of \[q\] in the above equation.
\[S = \left( {{2^p} - 1} \right)\left( {1 + {2^p} - 1} \right)\]
\[ \Rightarrow S = \left( {{2^p}} \right)\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = 2\left( {{2^{p - 1}}} \right)\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = 2n\]
Therefore, the sum of the divisors of \[n = {2^{p - 1}}\left( {{2^p} - 1} \right)\] is \[2n\].
Option ‘B’ is correct
Note: Students get confused about the formulas of the sum of the terms in the geometric progression:
The sum of the first \[n\] terms in the geometric progression \[a,ar,a{r^2},...,a{r^{n - 1}}\] is
Formulas:
\[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\], if \[r \ne 1\] and \[r > 1\]
\[{S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}}\], if \[r \ne 1\] and \[r < 1\]
Formula Used: \[{a^m}{a^n} = {a^{m + n}}\]
The sum of the first \[n\] terms in the geometric progression \[a,ar,a{r^2},...,a{r^{n - 1}}\] is: \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\] if \[r \ne 1\] . Where \[a\] is the first term and \[r\] is the common ratio.
Complete step by step solution: Given:
\[n = {2^{p - 1}}\left( {{2^p} - 1} \right)\] and \[\left( {{2^p} - 1} \right)\] is a prime number.
Let’s find out the divisors of the given number \[n\].
Let consider \[n = {2^{p - 1}}q\], where \[{2^p} - 1 = q\].
So, the divisors of \[n = {2^{p - 1}}q\] are
\[1,2,{2^2},{2^3},....,{2^{p - 1}},q,2q,{2^2}q,{2^3}q,...{2^{p - 2}}q,{2^{p - 1}}q\]
The sum of the divisors of \[n\] is:
\[S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}} + q + 2q + {2^2}q + {2^3}q + ... + {2^{p - 2}}q + {2^{p - 1}}q} \right)\]
Solve the right-hand side of the above equation.
\[S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}}} \right) + \left( {q + 2q + {2^2}q + {2^3}q + ... + {2^{p - 2}}q + {2^{p - 1}}q} \right)\]
\[ \Rightarrow S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}}} \right) + q\left( {1 + 2 + {2^2} + {2^3} + ... + {2^{p - 2}} + {2^{p - 1}}} \right)\]
The terms of the above summation are in the geometric progression with the common difference 2.
So, apply the formula of the sum of the terms in a geometric progression on the right-hand side.
We get,
\[S = \dfrac{{1\left( {{2^p} - 1} \right)}}{{2 - 1}} + q\dfrac{{1\left( {{2^p} - 1} \right)}}{{2 - 1}}\]
\[ \Rightarrow S = \left( {{2^p} - 1} \right) + q\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = \left( {{2^p} - 1} \right)\left( {1 + q} \right)\]
Substitute the value of \[q\] in the above equation.
\[S = \left( {{2^p} - 1} \right)\left( {1 + {2^p} - 1} \right)\]
\[ \Rightarrow S = \left( {{2^p}} \right)\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = 2\left( {{2^{p - 1}}} \right)\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = 2n\]
Therefore, the sum of the divisors of \[n = {2^{p - 1}}\left( {{2^p} - 1} \right)\] is \[2n\].
Option ‘B’ is correct
Note: Students get confused about the formulas of the sum of the terms in the geometric progression:
The sum of the first \[n\] terms in the geometric progression \[a,ar,a{r^2},...,a{r^{n - 1}}\] is
Formulas:
\[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\], if \[r \ne 1\] and \[r > 1\]
\[{S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}}\], if \[r \ne 1\] and \[r < 1\]
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

