
If \[n = {2^{p - 1}}\left( {{2^p} - 1} \right)\] , where \[\left( {{2^p} - 1} \right)\] is a prime. Then what is the sum of the divisors of \[n\]?
A. \[n\]
B. \[2n\]
C. \[pn\]
D. \[{p^n}\]
Answer
164.4k+ views
Hint: Here, a number is given. First, using the terms of the number find each divisor. After that, calculate the sum of the divisors. Simplify the equation of the sum of the divisors by using the formula of the sum of the finite terms in the geometric progression. In the end, solve the equation by using the power properties of a number and get the required answer.
Formula Used: \[{a^m}{a^n} = {a^{m + n}}\]
The sum of the first \[n\] terms in the geometric progression \[a,ar,a{r^2},...,a{r^{n - 1}}\] is: \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\] if \[r \ne 1\] . Where \[a\] is the first term and \[r\] is the common ratio.
Complete step by step solution: Given:
\[n = {2^{p - 1}}\left( {{2^p} - 1} \right)\] and \[\left( {{2^p} - 1} \right)\] is a prime number.
Let’s find out the divisors of the given number \[n\].
Let consider \[n = {2^{p - 1}}q\], where \[{2^p} - 1 = q\].
So, the divisors of \[n = {2^{p - 1}}q\] are
\[1,2,{2^2},{2^3},....,{2^{p - 1}},q,2q,{2^2}q,{2^3}q,...{2^{p - 2}}q,{2^{p - 1}}q\]
The sum of the divisors of \[n\] is:
\[S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}} + q + 2q + {2^2}q + {2^3}q + ... + {2^{p - 2}}q + {2^{p - 1}}q} \right)\]
Solve the right-hand side of the above equation.
\[S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}}} \right) + \left( {q + 2q + {2^2}q + {2^3}q + ... + {2^{p - 2}}q + {2^{p - 1}}q} \right)\]
\[ \Rightarrow S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}}} \right) + q\left( {1 + 2 + {2^2} + {2^3} + ... + {2^{p - 2}} + {2^{p - 1}}} \right)\]
The terms of the above summation are in the geometric progression with the common difference 2.
So, apply the formula of the sum of the terms in a geometric progression on the right-hand side.
We get,
\[S = \dfrac{{1\left( {{2^p} - 1} \right)}}{{2 - 1}} + q\dfrac{{1\left( {{2^p} - 1} \right)}}{{2 - 1}}\]
\[ \Rightarrow S = \left( {{2^p} - 1} \right) + q\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = \left( {{2^p} - 1} \right)\left( {1 + q} \right)\]
Substitute the value of \[q\] in the above equation.
\[S = \left( {{2^p} - 1} \right)\left( {1 + {2^p} - 1} \right)\]
\[ \Rightarrow S = \left( {{2^p}} \right)\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = 2\left( {{2^{p - 1}}} \right)\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = 2n\]
Therefore, the sum of the divisors of \[n = {2^{p - 1}}\left( {{2^p} - 1} \right)\] is \[2n\].
Option ‘B’ is correct
Note: Students get confused about the formulas of the sum of the terms in the geometric progression:
The sum of the first \[n\] terms in the geometric progression \[a,ar,a{r^2},...,a{r^{n - 1}}\] is
Formulas:
\[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\], if \[r \ne 1\] and \[r > 1\]
\[{S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}}\], if \[r \ne 1\] and \[r < 1\]
Formula Used: \[{a^m}{a^n} = {a^{m + n}}\]
The sum of the first \[n\] terms in the geometric progression \[a,ar,a{r^2},...,a{r^{n - 1}}\] is: \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\] if \[r \ne 1\] . Where \[a\] is the first term and \[r\] is the common ratio.
Complete step by step solution: Given:
\[n = {2^{p - 1}}\left( {{2^p} - 1} \right)\] and \[\left( {{2^p} - 1} \right)\] is a prime number.
Let’s find out the divisors of the given number \[n\].
Let consider \[n = {2^{p - 1}}q\], where \[{2^p} - 1 = q\].
So, the divisors of \[n = {2^{p - 1}}q\] are
\[1,2,{2^2},{2^3},....,{2^{p - 1}},q,2q,{2^2}q,{2^3}q,...{2^{p - 2}}q,{2^{p - 1}}q\]
The sum of the divisors of \[n\] is:
\[S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}} + q + 2q + {2^2}q + {2^3}q + ... + {2^{p - 2}}q + {2^{p - 1}}q} \right)\]
Solve the right-hand side of the above equation.
\[S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}}} \right) + \left( {q + 2q + {2^2}q + {2^3}q + ... + {2^{p - 2}}q + {2^{p - 1}}q} \right)\]
\[ \Rightarrow S = \left( {1 + 2 + {2^2} + {2^3} + .... + {2^{p - 1}}} \right) + q\left( {1 + 2 + {2^2} + {2^3} + ... + {2^{p - 2}} + {2^{p - 1}}} \right)\]
The terms of the above summation are in the geometric progression with the common difference 2.
So, apply the formula of the sum of the terms in a geometric progression on the right-hand side.
We get,
\[S = \dfrac{{1\left( {{2^p} - 1} \right)}}{{2 - 1}} + q\dfrac{{1\left( {{2^p} - 1} \right)}}{{2 - 1}}\]
\[ \Rightarrow S = \left( {{2^p} - 1} \right) + q\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = \left( {{2^p} - 1} \right)\left( {1 + q} \right)\]
Substitute the value of \[q\] in the above equation.
\[S = \left( {{2^p} - 1} \right)\left( {1 + {2^p} - 1} \right)\]
\[ \Rightarrow S = \left( {{2^p}} \right)\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = 2\left( {{2^{p - 1}}} \right)\left( {{2^p} - 1} \right)\]
\[ \Rightarrow S = 2n\]
Therefore, the sum of the divisors of \[n = {2^{p - 1}}\left( {{2^p} - 1} \right)\] is \[2n\].
Option ‘B’ is correct
Note: Students get confused about the formulas of the sum of the terms in the geometric progression:
The sum of the first \[n\] terms in the geometric progression \[a,ar,a{r^2},...,a{r^{n - 1}}\] is
Formulas:
\[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\], if \[r \ne 1\] and \[r > 1\]
\[{S_n} = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}}\], if \[r \ne 1\] and \[r < 1\]
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
