
If matrix \[A = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right]\], then \[{A^{16}} = \]
A. \[\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}
0&1 \\
1&0
\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
0&1
\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\]
Answer
164.1k+ views
Hint: To solve this question we will first find the value of \[{A^2}\]. After this we will calculate \[{A^{4}}\] by multiplying \[{A^2}\] with \[{A^2}\]. After calculating the value of \[{A^{4}}\] we will find the value of find \[{A^16}\] by squaring \[{A^{4}}\] that is by multiplying \[{A^{4}}\] with \[{A^{4}}\].
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step Solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right]\]
We will first calculate the value of \[{A^2}\] by multiplying \[A\] with \[A\]
We will now evaluate \[{{A}^{4}}\] by calculating \[{{A}^{4}}={{A}^{2}}\times {{A}^{2}}\].
\[\begin{align}
& {{A}^{4}}={{A}^{2}}\times {{A}^{2}} \\
& {{A}^{4}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & -1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]\times \left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & -1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right] \\
& {{A}^{4}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]
\end{align}\]
Now we will evaluate \[{{A}^{16}}\] by calculating \[{{A}^{16}}={{A}^{4}}\times {{A}^{4}}\].
\[\begin{align}
& {{A}^{16}}={{A}^{4}}\times {{A}^{4}} \\
& {{A}^{16}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]\times \left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right] \\
& {{A}^{16}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]
\end{align}\]
Option D. is the correct answer.
Note:To solve the given problem, one must know to multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix. One must also know to write large numbers in terms of smaller ones for easier simplification.
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step Solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right]\]
We will first calculate the value of \[{A^2}\] by multiplying \[A\] with \[A\]
We will now evaluate \[{{A}^{4}}\] by calculating \[{{A}^{4}}={{A}^{2}}\times {{A}^{2}}\].
\[\begin{align}
& {{A}^{4}}={{A}^{2}}\times {{A}^{2}} \\
& {{A}^{4}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & -1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]\times \left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & -1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right] \\
& {{A}^{4}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]
\end{align}\]
Now we will evaluate \[{{A}^{16}}\] by calculating \[{{A}^{16}}={{A}^{4}}\times {{A}^{4}}\].
\[\begin{align}
& {{A}^{16}}={{A}^{4}}\times {{A}^{4}} \\
& {{A}^{16}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]\times \left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right] \\
& {{A}^{16}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]
\end{align}\]
Option D. is the correct answer.
Note:To solve the given problem, one must know to multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix. One must also know to write large numbers in terms of smaller ones for easier simplification.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions
