
If matrix \[A = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right]\], then \[{A^{16}} = \]
A. \[\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}}
0&1 \\
1&0
\end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
0&1
\end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\]
Answer
232.8k+ views
Hint: To solve this question we will first find the value of \[{A^2}\]. After this we will calculate \[{A^{4}}\] by multiplying \[{A^2}\] with \[{A^2}\]. After calculating the value of \[{A^{4}}\] we will find the value of find \[{A^16}\] by squaring \[{A^{4}}\] that is by multiplying \[{A^{4}}\] with \[{A^{4}}\].
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step Solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right]\]
We will first calculate the value of \[{A^2}\] by multiplying \[A\] with \[A\]
We will now evaluate \[{{A}^{4}}\] by calculating \[{{A}^{4}}={{A}^{2}}\times {{A}^{2}}\].
\[\begin{align}
& {{A}^{4}}={{A}^{2}}\times {{A}^{2}} \\
& {{A}^{4}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & -1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]\times \left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & -1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right] \\
& {{A}^{4}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]
\end{align}\]
Now we will evaluate \[{{A}^{16}}\] by calculating \[{{A}^{16}}={{A}^{4}}\times {{A}^{4}}\].
\[\begin{align}
& {{A}^{16}}={{A}^{4}}\times {{A}^{4}} \\
& {{A}^{16}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]\times \left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right] \\
& {{A}^{16}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]
\end{align}\]
Option D. is the correct answer.
Note:To solve the given problem, one must know to multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix. One must also know to write large numbers in terms of smaller ones for easier simplification.
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step Solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right]\]
We will first calculate the value of \[{A^2}\] by multiplying \[A\] with \[A\]
We will now evaluate \[{{A}^{4}}\] by calculating \[{{A}^{4}}={{A}^{2}}\times {{A}^{2}}\].
\[\begin{align}
& {{A}^{4}}={{A}^{2}}\times {{A}^{2}} \\
& {{A}^{4}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & -1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]\times \left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & -1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right] \\
& {{A}^{4}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]
\end{align}\]
Now we will evaluate \[{{A}^{16}}\] by calculating \[{{A}^{16}}={{A}^{4}}\times {{A}^{4}}\].
\[\begin{align}
& {{A}^{16}}={{A}^{4}}\times {{A}^{4}} \\
& {{A}^{16}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]\times \left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right] \\
& {{A}^{16}}=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & 1\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right]
\end{align}\]
Option D. is the correct answer.
Note:To solve the given problem, one must know to multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix. One must also know to write large numbers in terms of smaller ones for easier simplification.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

