
If \[{{\mathop{\rm l}\nolimits} ^r}\left( x \right)\] means \[\log \log \log \ldots \ldots \ldots x\], the log being repeated \[r\] times, then \[\int {{{\left[ {x{\mathop{\rm l}\nolimits} \left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right){{\mathop{\rm l}\nolimits} ^3}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]}^{ - 1}}dx} \] is equal to
(a) \[{{\mathop{\rm l}\nolimits} ^{r + 1}}\left( x \right) + C\]
(b) \[\dfrac{{{{\mathop{\rm l}\nolimits} ^{r + 1}}\left( x \right)}}{{r + 1}} + C\]
(c) \[{{\mathop{\rm l}\nolimits} ^r}\left( x \right) + C\]
(d) None of these
Answer
231.6k+ views
Hint:
Here, we will use the concept of integration using a substitution method. Integration by substitution method helps in transforming a given integral into simple form by substituting an independent variable. We will introduce an independent variable and equate it with the given function. We will then differentiate it with respect to \[x\] and apply the given condition to find the answer.
Complete step by step solution:
We will use substitution to integrate the given function.
Let \[t = {{\mathop{\rm l}\nolimits} ^{r + 1}}\left( x \right)\].
Thus, we get
\[ \Rightarrow t = \log \log \log \ldots \ldots \ldots x\]
Here, the log is repeated \[r + 1\] times.
Differentiating both sides of the function with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{{\log \log \ldots \ldots \ldots x}} \times \dfrac{{d\left( {\log \log \ldots \ldots \ldots x} \right)}}{{dx}}\]
Here, the log in the denominator is repeated \[r\] times, and the log in the numerator of the second expression is also repeated \[r\] times.
Differentiating the second expression, we get
\[ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{{\log \log \ldots \ldots \ldots x}} \times \dfrac{1}{{\log \log \ldots \ldots \ldots x}} \times \dfrac{{d\left( {\log \log \ldots \ldots \ldots x} \right)}}{{dx}}\]
Here, the log in the denominator of first expression is repeated \[r\] times, and the log in the denominator of second expression is repeated \[r - 1\] times.
This will keep on repeating due to chain rule of differentiation, with the final derivative in the chain being \[\dfrac{{d\left( {\log \left( x \right)} \right)}}{{dx}}\].
Therefore, rewriting the equation, we get
\[\begin{array}{l} \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{{\log \log \ldots \ldots \ldots x}} \times \dfrac{1}{{\log \log \ldots \ldots \ldots x}} \times \ldots \ldots \ldots \times \dfrac{1}{{\log \log x}} \times \dfrac{1}{{\log x}} \times \dfrac{{d\left( {\log x} \right)}}{{dx}}\\ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{{\log \log \ldots \ldots \ldots x}} \times \dfrac{1}{{\log \log \ldots \ldots \ldots x}} \times \ldots \ldots \ldots \times \dfrac{1}{{\log \log x}} \times \dfrac{1}{{\log x}} \times \dfrac{1}{x}\end{array}\]
We know that \[{{\mathop{\rm l}\nolimits} ^r}\left( x \right)\] means \[\log \log \log \ldots \ldots \ldots x\], the log being repeated \[r\] times.
Using this formula to rewrite the expression in the integral, we get
\[ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{{{{\mathop{\rm l}\nolimits} ^r}\left( x \right)}} \times \dfrac{1}{{{{\mathop{\rm l}\nolimits} ^{r - 1}}\left( x \right)}} \times \ldots \ldots \ldots \times \dfrac{1}{{{{\mathop{\rm l}\nolimits} ^2}\left( x \right)}} \times \dfrac{1}{{{{\mathop{\rm l}\nolimits} ^1}\left( x \right)}} \times \dfrac{1}{x}\]
Multiplying the terms of the expression, we get
\[\begin{array}{l} \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{{x{{\mathop{\rm l}\nolimits} ^1}\left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)}}\\ \Rightarrow \dfrac{{dt}}{{dx}} = {\left[ {x{{\mathop{\rm l}\nolimits} ^1}\left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]^{ - 1}}\\ \Rightarrow dt = {\left[ {x{{\mathop{\rm l}\nolimits} ^1}\left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]^{ - 1}}dx\end{array}\]
Now, substituting \[t = {{\mathop{\rm l}\nolimits} ^{r + 1}}\left( x \right)\] and \[{\left[ {x{{\mathop{\rm l}\nolimits} ^1}\left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]^{ - 1}}dx = dt\] in the integral \[\int {{{\left[ {x{\mathop{\rm l}\nolimits} \left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right){{\mathop{\rm l}\nolimits} ^3}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]}^{ - 1}}dx} \], we get
\[\begin{array}{l}\int {{{\left[ {x{\mathop{\rm l}\nolimits} \left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right){{\mathop{\rm l}\nolimits} ^3}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]}^{ - 1}}dx} = \int {dt} \\ \Rightarrow \int {{{\left[ {x{\mathop{\rm l}\nolimits} \left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right){{\mathop{\rm l}\nolimits} ^3}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]}^{ - 1}}dx} = \int {\left( 1 \right)dt} \end{array}\]
Integrating the constant with respect to \[t\], we get
\[ \Rightarrow \int {{{\left[ {x{\mathop{\rm l}\nolimits} \left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right){{\mathop{\rm l}\nolimits} ^3}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]}^{ - 1}}dx} = t + C\]
Substituting \[t = {{\mathop{\rm l}\nolimits} ^{r + 1}}\left( x \right)\] in the expression, we get the value of the integral as
\[ \Rightarrow \int {{{\left[ {x{\mathop{\rm l}\nolimits} \left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right){{\mathop{\rm l}\nolimits} ^3}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]}^{ - 1}}dx} = {{\mathop{\rm l}\nolimits} ^{r + 1}}\left( x \right) + C\]
Hence, the value of the integral is \[{{\mathop{\rm l}\nolimits} ^{r + 1}}\left( x \right) + C\].
\[\therefore\] The correct option is option (a).
Note:
We should be careful while differentiating the equation \[t = \log \log \log \ldots \ldots \ldots x\] using the chain rule. We should remember the number of times log repeats in every \[\log \log \log \ldots \ldots \ldots x\]. This will help us to convert \[\log \log \log \ldots \ldots \ldots x\] to \[{{\mathop{\rm l}\nolimits} ^r}\left( x \right)\] and simplify the derivative. Here we have solved the question using integration by substitution method. This method is used to simplify a large function.
Here, we will use the concept of integration using a substitution method. Integration by substitution method helps in transforming a given integral into simple form by substituting an independent variable. We will introduce an independent variable and equate it with the given function. We will then differentiate it with respect to \[x\] and apply the given condition to find the answer.
Complete step by step solution:
We will use substitution to integrate the given function.
Let \[t = {{\mathop{\rm l}\nolimits} ^{r + 1}}\left( x \right)\].
Thus, we get
\[ \Rightarrow t = \log \log \log \ldots \ldots \ldots x\]
Here, the log is repeated \[r + 1\] times.
Differentiating both sides of the function with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{{\log \log \ldots \ldots \ldots x}} \times \dfrac{{d\left( {\log \log \ldots \ldots \ldots x} \right)}}{{dx}}\]
Here, the log in the denominator is repeated \[r\] times, and the log in the numerator of the second expression is also repeated \[r\] times.
Differentiating the second expression, we get
\[ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{{\log \log \ldots \ldots \ldots x}} \times \dfrac{1}{{\log \log \ldots \ldots \ldots x}} \times \dfrac{{d\left( {\log \log \ldots \ldots \ldots x} \right)}}{{dx}}\]
Here, the log in the denominator of first expression is repeated \[r\] times, and the log in the denominator of second expression is repeated \[r - 1\] times.
This will keep on repeating due to chain rule of differentiation, with the final derivative in the chain being \[\dfrac{{d\left( {\log \left( x \right)} \right)}}{{dx}}\].
Therefore, rewriting the equation, we get
\[\begin{array}{l} \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{{\log \log \ldots \ldots \ldots x}} \times \dfrac{1}{{\log \log \ldots \ldots \ldots x}} \times \ldots \ldots \ldots \times \dfrac{1}{{\log \log x}} \times \dfrac{1}{{\log x}} \times \dfrac{{d\left( {\log x} \right)}}{{dx}}\\ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{{\log \log \ldots \ldots \ldots x}} \times \dfrac{1}{{\log \log \ldots \ldots \ldots x}} \times \ldots \ldots \ldots \times \dfrac{1}{{\log \log x}} \times \dfrac{1}{{\log x}} \times \dfrac{1}{x}\end{array}\]
We know that \[{{\mathop{\rm l}\nolimits} ^r}\left( x \right)\] means \[\log \log \log \ldots \ldots \ldots x\], the log being repeated \[r\] times.
Using this formula to rewrite the expression in the integral, we get
\[ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{{{{\mathop{\rm l}\nolimits} ^r}\left( x \right)}} \times \dfrac{1}{{{{\mathop{\rm l}\nolimits} ^{r - 1}}\left( x \right)}} \times \ldots \ldots \ldots \times \dfrac{1}{{{{\mathop{\rm l}\nolimits} ^2}\left( x \right)}} \times \dfrac{1}{{{{\mathop{\rm l}\nolimits} ^1}\left( x \right)}} \times \dfrac{1}{x}\]
Multiplying the terms of the expression, we get
\[\begin{array}{l} \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{{x{{\mathop{\rm l}\nolimits} ^1}\left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)}}\\ \Rightarrow \dfrac{{dt}}{{dx}} = {\left[ {x{{\mathop{\rm l}\nolimits} ^1}\left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]^{ - 1}}\\ \Rightarrow dt = {\left[ {x{{\mathop{\rm l}\nolimits} ^1}\left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]^{ - 1}}dx\end{array}\]
Now, substituting \[t = {{\mathop{\rm l}\nolimits} ^{r + 1}}\left( x \right)\] and \[{\left[ {x{{\mathop{\rm l}\nolimits} ^1}\left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]^{ - 1}}dx = dt\] in the integral \[\int {{{\left[ {x{\mathop{\rm l}\nolimits} \left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right){{\mathop{\rm l}\nolimits} ^3}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]}^{ - 1}}dx} \], we get
\[\begin{array}{l}\int {{{\left[ {x{\mathop{\rm l}\nolimits} \left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right){{\mathop{\rm l}\nolimits} ^3}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]}^{ - 1}}dx} = \int {dt} \\ \Rightarrow \int {{{\left[ {x{\mathop{\rm l}\nolimits} \left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right){{\mathop{\rm l}\nolimits} ^3}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]}^{ - 1}}dx} = \int {\left( 1 \right)dt} \end{array}\]
Integrating the constant with respect to \[t\], we get
\[ \Rightarrow \int {{{\left[ {x{\mathop{\rm l}\nolimits} \left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right){{\mathop{\rm l}\nolimits} ^3}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]}^{ - 1}}dx} = t + C\]
Substituting \[t = {{\mathop{\rm l}\nolimits} ^{r + 1}}\left( x \right)\] in the expression, we get the value of the integral as
\[ \Rightarrow \int {{{\left[ {x{\mathop{\rm l}\nolimits} \left( x \right){{\mathop{\rm l}\nolimits} ^2}\left( x \right){{\mathop{\rm l}\nolimits} ^3}\left( x \right) \ldots \ldots \ldots {{\mathop{\rm l}\nolimits} ^r}\left( x \right)} \right]}^{ - 1}}dx} = {{\mathop{\rm l}\nolimits} ^{r + 1}}\left( x \right) + C\]
Hence, the value of the integral is \[{{\mathop{\rm l}\nolimits} ^{r + 1}}\left( x \right) + C\].
\[\therefore\] The correct option is option (a).
Note:
We should be careful while differentiating the equation \[t = \log \log \log \ldots \ldots \ldots x\] using the chain rule. We should remember the number of times log repeats in every \[\log \log \log \ldots \ldots \ldots x\]. This will help us to convert \[\log \log \log \ldots \ldots \ldots x\] to \[{{\mathop{\rm l}\nolimits} ^r}\left( x \right)\] and simplify the derivative. Here we have solved the question using integration by substitution method. This method is used to simplify a large function.
Recently Updated Pages
JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

