
If $M = \left[ {\begin{array}{*{20}{c}}
1&2 \\
2&3
\end{array}} \right]$ and ${M^2} - \lambda M - I = 0$, then $\lambda $ equals
A. -2
B. 2
C. -4
D. 4
Answer
162.6k+ views
Hint: First, find the value of ${M^2}$ by multiplying the matrix $M$ with itself. Then find the value of $\lambda M$ by multiplying each entry/element by $\lambda $. Now substitute the values of ${M^2}$, $\lambda M$ and $I$ in the equation ${M^2} - \lambda M - I = 0$.
Formula Used: $\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
e&f \\
g&h
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\left( a \right)\left( e \right) + \left( b \right)\left( g \right)}&{\left( a \right)\left( f \right) + \left( b \right)\left( h \right)} \\
{\left( c \right)\left( e \right) + \left( d \right)\left( g \right)}&{\left( c \right)\left( f \right) + \left( d \right)\left( h \right)}
\end{array}} \right]$
Complete step by step Solution:
Let us first find the value of ${M^2}$ by multiplying the matrix with itself.
\[{M^2} = \left[ {\begin{array}{*{20}{c}}
1&2 \\
2&3
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&2 \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\left( 1 \right)\left( 1 \right) + \left( 2 \right)\left( 2 \right)}&{\left( 1 \right)\left( 2 \right) + \left( 2 \right)\left( 3 \right)} \\
{\left( 2 \right)\left( 1 \right) + \left( 3 \right)\left( 2 \right)}&{\left( 2 \right)\left( 2 \right) + \left( 3 \right)\left( 3 \right)}
\end{array}} \right]\]
${M^2} = \left[ {\begin{array}{*{20}{c}}
5&8 \\
8&{13}
\end{array}} \right]$
Let us now find the value of $\lambda M$ and $I$.
$\lambda M = \left[ {\begin{array}{*{20}{c}}
\lambda &{2\lambda } \\
{2\lambda }&{3\lambda }
\end{array}} \right]$
$I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
It is given that ${M^2} - \lambda M - I = 0$. Therefore,
$\left[ {\begin{array}{*{20}{c}}
5&8 \\
8&{13}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
\lambda &{2\lambda } \\
{2\lambda }&{3\lambda }
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = 0$
$\left[ {\begin{array}{*{20}{c}}
{5 - \lambda - 1}&{8 - 2\lambda } \\
{8 - 2\lambda }&{13 - 3\lambda - 1}
\end{array}} \right] = 0$
Solving any of the four elements, let’s say $8 - 2\lambda = 0$, we get $\lambda = 4$.
Therefore, the correct answer is option (D)
Note: A shorter and alternate way of doing this question: Write the equation ${M^2} - \lambda M - I = 0$ as ${M^2} - \lambda M = I$. Let us just solve for the first element in all the 3 matrices. The first element in\[{M^2}\] is \[\left( 1 \right)\left( 1 \right) + \left( 2 \right)\left( 2 \right) = 5\], the first element in $\lambda M$ is $\lambda $ and the first element in $I$ is $1$. Therefore, $5 - \lambda = 1$ and from this we get $\lambda = 4$.
Formula Used: $\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
e&f \\
g&h
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\left( a \right)\left( e \right) + \left( b \right)\left( g \right)}&{\left( a \right)\left( f \right) + \left( b \right)\left( h \right)} \\
{\left( c \right)\left( e \right) + \left( d \right)\left( g \right)}&{\left( c \right)\left( f \right) + \left( d \right)\left( h \right)}
\end{array}} \right]$
Complete step by step Solution:
Let us first find the value of ${M^2}$ by multiplying the matrix with itself.
\[{M^2} = \left[ {\begin{array}{*{20}{c}}
1&2 \\
2&3
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&2 \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\left( 1 \right)\left( 1 \right) + \left( 2 \right)\left( 2 \right)}&{\left( 1 \right)\left( 2 \right) + \left( 2 \right)\left( 3 \right)} \\
{\left( 2 \right)\left( 1 \right) + \left( 3 \right)\left( 2 \right)}&{\left( 2 \right)\left( 2 \right) + \left( 3 \right)\left( 3 \right)}
\end{array}} \right]\]
${M^2} = \left[ {\begin{array}{*{20}{c}}
5&8 \\
8&{13}
\end{array}} \right]$
Let us now find the value of $\lambda M$ and $I$.
$\lambda M = \left[ {\begin{array}{*{20}{c}}
\lambda &{2\lambda } \\
{2\lambda }&{3\lambda }
\end{array}} \right]$
$I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
It is given that ${M^2} - \lambda M - I = 0$. Therefore,
$\left[ {\begin{array}{*{20}{c}}
5&8 \\
8&{13}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
\lambda &{2\lambda } \\
{2\lambda }&{3\lambda }
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = 0$
$\left[ {\begin{array}{*{20}{c}}
{5 - \lambda - 1}&{8 - 2\lambda } \\
{8 - 2\lambda }&{13 - 3\lambda - 1}
\end{array}} \right] = 0$
Solving any of the four elements, let’s say $8 - 2\lambda = 0$, we get $\lambda = 4$.
Therefore, the correct answer is option (D)
Note: A shorter and alternate way of doing this question: Write the equation ${M^2} - \lambda M - I = 0$ as ${M^2} - \lambda M = I$. Let us just solve for the first element in all the 3 matrices. The first element in\[{M^2}\] is \[\left( 1 \right)\left( 1 \right) + \left( 2 \right)\left( 2 \right) = 5\], the first element in $\lambda M$ is $\lambda $ and the first element in $I$ is $1$. Therefore, $5 - \lambda = 1$ and from this we get $\lambda = 4$.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

How To Find Mean Deviation For Ungrouped Data

Difference Between Molecule and Compound: JEE Main 2024

Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses

Difference Between Area and Surface Area: JEE Main 2024

Difference Between Work and Power: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
