Answer
Verified
80.7k+ views
Hint- Simplify the L.H.S and reduce it to a single term and try to cancel out numerator and denominator which gives unit value.
Given: $lmn = 1$
To prove: $\dfrac{1}{{1 + l + {m^{ - 1}}}} + \dfrac{1}{{1 + m + {n^{ - 1}}}} + \dfrac{1}{{1 + n + {l^{ - 1}}}} = 1$
Taking first term, \[\dfrac{1}{{1 + l + {m^{ - 1}}}}\]
$
= \dfrac{1}{{1 + l + \dfrac{1}{m}}} \\
= \dfrac{m}{{m + lm + 1}} \\
$
Taking second term, \[\dfrac{1}{{1 + m + {n^{ - 1}}}}\]
\[
= \dfrac{1}{{1 + m + \dfrac{1}{n}}} \\
= \dfrac{1}{{1 + m + lm}}{\text{ }}\left\{ {\because lmn = 1 \Rightarrow \dfrac{1}{n} = lm} \right\} \\
\]
Taking third term, \[\dfrac{1}{{1 + n + {l^{ - 1}}}}\]
Multiply and divide by $lm$, we get:
\[
= \dfrac{1}{{1 + n + {l^{ - 1}}}} \times \dfrac{{lm}}{{lm}} \\
= \dfrac{{lm}}{{lm + lmn + {l^{ - 1}}lm}} \\
= \dfrac{{lm}}{{lm + 1 + m}}{\text{ }}\left\{ {\because lmn = 1} \right\} \\
\]
Now, combining all these terms to form the L.H.S, we get:
\[
{\text{L}}{\text{.H}}{\text{.S}} = \dfrac{1}{{1 + l + {m^{ - 1}}}} + \dfrac{1}{{1 + m + {n^{ - 1}}}} + \dfrac{1}{{1 + n + {l^{ - 1}}}} \\
= \dfrac{1}{{1 + l + \dfrac{1}{m}}} + \dfrac{1}{{1 + m + \dfrac{1}{n}}} + \dfrac{1}{{1 + n + \dfrac{1}{l}}} \\
= \dfrac{m}{{m + lm + 1}} + \dfrac{1}{{1 + m + lm}} + \dfrac{{lm}}{{lm + 1 + m}} \\
\]
Since, these have common denominator, hence we can add them directly.
\[
= \dfrac{{m + 1 + lm}}{{m + lm + 1}} \\
= 1 \\
= {\text{R}}{\text{.H}}{\text{.S}} \\
\]
Hence Proved.
Note- Whenever you see equations like these, always try to look for patterns to reduce the fraction and try to make denominators of each term equal in order to add the terms easily.
Given: $lmn = 1$
To prove: $\dfrac{1}{{1 + l + {m^{ - 1}}}} + \dfrac{1}{{1 + m + {n^{ - 1}}}} + \dfrac{1}{{1 + n + {l^{ - 1}}}} = 1$
Taking first term, \[\dfrac{1}{{1 + l + {m^{ - 1}}}}\]
$
= \dfrac{1}{{1 + l + \dfrac{1}{m}}} \\
= \dfrac{m}{{m + lm + 1}} \\
$
Taking second term, \[\dfrac{1}{{1 + m + {n^{ - 1}}}}\]
\[
= \dfrac{1}{{1 + m + \dfrac{1}{n}}} \\
= \dfrac{1}{{1 + m + lm}}{\text{ }}\left\{ {\because lmn = 1 \Rightarrow \dfrac{1}{n} = lm} \right\} \\
\]
Taking third term, \[\dfrac{1}{{1 + n + {l^{ - 1}}}}\]
Multiply and divide by $lm$, we get:
\[
= \dfrac{1}{{1 + n + {l^{ - 1}}}} \times \dfrac{{lm}}{{lm}} \\
= \dfrac{{lm}}{{lm + lmn + {l^{ - 1}}lm}} \\
= \dfrac{{lm}}{{lm + 1 + m}}{\text{ }}\left\{ {\because lmn = 1} \right\} \\
\]
Now, combining all these terms to form the L.H.S, we get:
\[
{\text{L}}{\text{.H}}{\text{.S}} = \dfrac{1}{{1 + l + {m^{ - 1}}}} + \dfrac{1}{{1 + m + {n^{ - 1}}}} + \dfrac{1}{{1 + n + {l^{ - 1}}}} \\
= \dfrac{1}{{1 + l + \dfrac{1}{m}}} + \dfrac{1}{{1 + m + \dfrac{1}{n}}} + \dfrac{1}{{1 + n + \dfrac{1}{l}}} \\
= \dfrac{m}{{m + lm + 1}} + \dfrac{1}{{1 + m + lm}} + \dfrac{{lm}}{{lm + 1 + m}} \\
\]
Since, these have common denominator, hence we can add them directly.
\[
= \dfrac{{m + 1 + lm}}{{m + lm + 1}} \\
= 1 \\
= {\text{R}}{\text{.H}}{\text{.S}} \\
\]
Hence Proved.
Note- Whenever you see equations like these, always try to look for patterns to reduce the fraction and try to make denominators of each term equal in order to add the terms easily.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main